
www.manaraa.com

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI

films the text directly from the original or copy submitted. Thus, some

thesis and dissertation copies are in typewriter face, while others may be

from any type o f computer printer.

The quality of this reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality

illustrations and photographs, print bleedthrough, substandard margins,

and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete

manuscript and there are missing pages, these will be noted. Also, if

unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand comer and

continuing from left to right in equal sections with small overlaps. Each

original is also photographed in one exposure and is included in reduced

form at the back o f the book.

Photographs included in the original manuscript have been reproduced

xerographically in this copy. Higher quality 6” x 9” black and white

photographic prints are available for any photographs or illustrations

appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI
A Bell & Howell Information Company

300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

k

I __

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.comReproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

ENABLING ENTERPRISE INTEGRATION THROUGH ARCHITECTURE

by

WILLIAM DALE BURG, B.S.B.A., B.S.

A DISSERTATION

IN

BUSINESS ADMINISTRATION

Submitted to the Graduate Faculty
of Texas Tech University in

Partial Fulfillment of
the Requirements for

the Degree of

DOCTOR OF PHILOSOPHY

Approved

Co-Chairperson of the Committee

* e?
Co-Chairperson o f the Committee

Accepted

Deaa-Af the Graduate School

December, 1997

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

UMI Number: 9812 006

Copyright 1997 by Burg, William Dale
All rights reserved.

UMI Microform 9812006
Copyright 1998, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI
300 North Zeeb Road
Ann Arbor, MI 48103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

© 1997

William D. Burg

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

ACKNOWLEDGMENTS

I would like to express my sincere appreciation to a number of individuals and

organizations who have helped to make this dissertation possible. First of all, I would

like to thank the members of my dissertation committee: Dr. D. P. Hale, Dr. S. B.

Yadav, Dr. J. G. Hunt, and Dr. J. B. Burns, for their continuous support,

encouragement, and suggestions. Specifically, I would like to thank Dr. Hale for his

unwavering support. Without it, this dissertation would not be a reality.

I am thankful to Texas Instruments, SEMATECH, and Electronic Data Systems

for their generous financial support of this research effort and the ANSI’s X3H7

Technical Committee for agreeing to review my efforts. Lastly, I would like to thank

Glenn Hollowell his belief that the results of this research effort will be of value to the

software practitioner.

ii

I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

TABLE OF CONTENTS

ACKNOW LEDGM ENTS.. ii

ABSTRACT ... vi

LIST OF FIGURES...viii

CHAPTER

I: OVERVIEW AND PURPOSE OF R E SE A R C H ...1

Introduction... 1

Problem S ta te m e n t.. 6

Purpose of R esearch.. 9

Research Methodology .. 10

Dissertation S t r u c tu r e ... 12

II: M ETHODOLOGY.. 13

Research A p p ro a c h .. 13

Research M ethodology... 16

Grounded T h e o r y .. 16

Data Collection... 17

Analysis or Interpretive Procedures....................................... 21

Form of Research Findings.. 26

Validation of Research Findings.. 28

Research Agenda .. 30

iii

l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

HI: THE FIRST R O U N D ... 36

Information Systems A rc h ite c tu re s ... 36

Productive Strategies .. 40

The Mass Production and Invention Strategy 44

The Mass Customization and Continuous
Improvement Strategy... 51

The Software Development P ro c e s s ... 57

S u m m ary .. 62

Validation of P r o p o s i t io n ... 63

IV: THE SECOND R O U N D .. 64

Identification of Data Collection S i t e s .. 64

Analysis of Interviews... 68

Synthesis of Propositions.. 83

Validation of Propositions ... 94

V: THE THIRD R O U N D .. 96

Identification of Data Collection S i t e s .. 96

Analysis of Interviews... 98

Synthesis of Propositions..101

Validation of Propositions .. 108

VI: THE FOURTH R O U N D ...109

Identification of Data Collection S i t e s ... 109

Analysis of Interviews...110

Synthesis of Propositions... I l l
iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

I

Validation of Propositions ...112

VH: SU M M A R Y ... 115

Integrating the Propositions..115

Implications of the M o d e l ... 120

Validation of the M o d e l ..121

VIE: LIMITATIONS, CONTRIBUTIONS,
AND FUTURE RESEARCH...123

Limitations of R e se a rc h ..123

Contributions of R e s e a r c h ...124

Future Research D irections...125

REFERENCES ... 126

APPENDIX: TRANSCRIPTS OF INTERVIEWS ..134

V

V

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

ABSTRACT

For firms to effectively compete in today's turbulent market environment, their

supporting software systems must be able to provide new, effective system solutions in

a timeframe necessary to enable the business change required to remain competitive.

In order to provide flexible responsive information systems, may organizations are

pursing the idea of building software using factory-like concepts. To develop a

software factory, information systems professionals focus on building standardized

production processes, components, and tools that could be reused across new system

solutions. To date, these attempts have resulted in the ability to build domain specific

applications, but these applications are limited in there capability to be extensible.

Thus, the requirement for systems to rapidly adapt has not been met. One of the major

reasons for these limited results has been the failure to design the software factory

concept upon an appropriate paradigm. Using the mass customization paradigm, this

research effort represents a conceptual step towards building new system solutions

based upon these driving business needs by identifying the functional requirements for

its use as a referent architectural paradigm for an adaptive software factory.

Using grounded theory, this exploratory research effort attempts to identify the

functional requirements of the command, control, and communication mechanism of a

mass customization based software factory by evaluating current research and

development projects centered around the ideas of the software factory and component

reuse. By grounding this research effort in the context in which the solution must

v i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

apply, the formal propositions developed thorough this research effort will have a high

degree of external consistency.

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

LIST OF FIGURES

1.1: Five Critical Issues Facing Information System Organizations
in Turbulent Market Environments... 2

1.2: Point Solution Approach to Five Critical I s s u e s ... 7

1.3: General Systems Theory Approach to Five Critical I s s u e s 8

2.1: Model of Research O utput.. 25

2.2: Research Methodology for Determining the Functional Requirements
for a Referent A rc h ite c tu re ... 35

3.1: Product-Process Change M a tr ix ... 42

4.1: Initial List of Organizations Involved in Architectural E fforts..................... 65

4.2: Overall Relationship Between Propositions Developed in Round 2 . . . 93

5.1: Overall Relationship Between Propositions Developed in
Round 2 and 3 107

6.1: Overall Relationship Between Propositions Developed in
Round 2, 3, and 4 ...114

7.1: A System and Its E nv ironm en t... 116

7.2: Integration of V iew s.. 118

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

i
CHAPTER I

OVERVIEW AND PURPOSE OF RESEARCH

Introduction

So dramatic, persistent, and pervasive are the changes in customer demands,

technologies, geographical boundaries, and business processes that the question of how

to effectively compete in today's rapidly changing environment is an issue of great

strategic significance to many firms (Porter, 1985; Miles and Snow, 1986). To

successfully compete in a turbulent market environment, firms must simultaneously

solve five critical issues (see Figure 1.1): increase the flexibility of their business

processes, decrease the cycle time to deliver new products, increase the quality of their

products, increase their productivity, and still maintain low costs (Piore and Sable,

1984; Davis, 1987; Dertouzous, Lester, Solow, and The MIT Commission for

Industrial Productivity, 1989; Quinn and Paquette, 1990; Boynton and Victor, 1991;

Pine 1993). Unfortunately, the underlying structure of most large firms is just too

"slow and maladaptive" to provide the flexibility, speed, quality and productivity

required to successfully compete in "today's high-speed business world" (Toffler,

1990).

Through efforts to increase flexibility and speed, firms are discovering that

inflexible information systems represent a major impediment to change (Hammer,

1990). By automating business processes through rigidly structured information

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

[

systems, firms have frozen "their organizations into patterns of behavior and operations

that resolutely resist change" (Allen and Boynton, p. 435, 1991). The issue facing

information technology organizations today is the fact that they must provide new

system solutions in a time frame necessary to enable the business change required for a

competitive posture (Stalk, Jr., 1988; Haeckel and Nolan, 1993).

- Flexibility of delivered solutions must be increased
to deal with continuous change

- Cycle time to deliver solutions must be reduced

- Quality of delivered solutions must be increased so
that solutions work correctly the first time

- Productivity of the software development process
must be increased

- Cost to deliver and operate solutions must be
dramatically reduced

Figure 1.1 Five Critical Issues Facing Information System
Organizations in Turbulent Market Environments

Under the traditional system development approach of top-down functional

decomposition, software engineers build software solutions by creating components that

are a part of the overall application structure. Within the application structure, they

specify not only the components but also the interrelationships among components.

Because systems built using top-down functional decomposition result in tightly

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

coupled components under a specific application structure, these components prove too

rigid to allow for effective integration under a new application configuration

(McGregor and Sykes, 1991; Taylor, 1995). To reconfigure system solutions built

using a top-down functional decomposition approach requires firms to rebuild major

portions of existing systems. The issue in this rebuilding process is not whether new

system solutions can be effectively constructed using a top-down functional

decomposition approach. Rather, the issue facing information technology organizations

today is the fact that software cannot be produced in a time frame necessary to enable

the necessary business change required for a competitive posture (Texas Instruments,

1994).

The requirement for the quick delivery of new systems solutions is most

commonly stated as a need for a reduction in cycle time to provision system solutions

in response to changing business needs. A requirement that is based upon a number of

experiences where top down functional decomposition was used to reconfigure systems

such as the following (Texas Instruments, 1994):

Twelve months cycle time to generate order fulfillment reports.

During a firm’s order fulfillment reengineering process, cycle time became a

key business issue. Even though order entry and unit shipment events were

automated and captured in databases, twelve months were required to generate

order fulfillment cycle time reports. Once these reports where available, the

business started to make significant improvements because problem areas could

be identified and addressed.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

%

Excessive time to consolidate two merged divisions.

When two separate business divisions where merged, a requirement was

immediately generated for a common system to support the merged

organizations. Within a six month period, the new organizations had sorted

through and resolved the organization, facilities, personnel and other issues

associated with the merger; however, the common system necessary to enable

this merger took an additional eighteen months to deliver. Consequently, the

benefits of the merger were delayed for over two years.

Inability to support business information needs created by an organizational
structure change.

A fundamental organizational change from a functional to a matrix structure

required shared "ownership" of resources, better management of human

resources, and better communications between project leaders and center of

excellence managers. The information technology support for this fundamental

change took over two years to realize, resulting in significant delays to the

organization.

The success of manufacturing firms in increasing quality and speed through the

development of a flexible manufacturing approach has led firms to believe that a similar

approach is possible in the production of software (Griss, 1993; Haeckel and Nolan,

1993; Texas Instruments, 1994). By analyzing the flexible manufacturing factory,

firms realized that the key to establishing a flexible, adaptable production approach is

to focus on achieving economies of scope, obtained by sharing standard parts and

processes across a variety of related products (Cusumano, 1991). In developing a

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

flexible software factory, firms are attempting to obtain economies of scope by

producing reusable standardized components that serve as the basic building blocks

across different programs (Cusumano, 1989). To avoid the problems of a rigid

centralized application structure, firms must attempt to establish a standardized

software development process that can assemble software solutions from these plug

compatible components in any configuration desired (Swanson, McComb, Smith, and

McCubbrey, 1991).

To date, the software factory's ability to provide customized enterprise-wide

solutions through reusable components can really be classified as practically

nonexistent. Although component reuse rates of 60% have been achieved within a

specific domain, usage rates across domains have reached only 20-30% (SRI

International, 1993). In today's software factories, the reuse domain is so specific and

the reuse level so low that these factories simply represent another development

technique that, like many others, is helpful in some contexts and inappropriate in many

others. Given the goal of the software factory, the problem with domain specific

artifact reuse is that it fails to provide the leverage necessary to achieve the requisite

flexibility, quality, and speed required to successfully compete in a turbulent market

environment (Griss, 1993; Prieto-Diaz, 1993).

To overcome the limitations of the current software factory, a new

comprehensive software development approach that reuses higher-level abstractions

across domains needs to be identified and implemented (Barnes and Bolinger, 1991;

Prieto-Diaz, 1993). To ensure the interdomain operability of these abstractions, the

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

new software development approach must provide an application structure that

simultaneously avoids the interdomain impedance of bottom-up ad hoc approaches and

the rigidity of centralized top-down approaches. To be effective, the new application

structure must simultaneously possess the flexibility of a decentralized application

structure and the efficiency of a centralized application structure (Allen and Boynton,

1991). For firms that cannot avoid a turbulent market environment, restructuring their

software development approaches to provide quick delivery of new software solutions

within a flexible application structure represents the only way to survive (Texas

Instruments, 1994). Because current software development approaches cannot provide

the required functionality, a new paradigm for the development of software needs to be

established.

Problem Statement

For firms facing a turbulent market environment, all five of the critical issues

facing these firms must be resolved simulateneouly in order for these firm to effectively

compete in that environment. Point-based solutions that do not simulateneously address

all of these critical issues will not be sufficient (see Figure 1.2). The issue for

information systems organizations is to specify an information technology development

process that enables organizations to effectively compete in a turbulent market

environement by providing the organization a tool for simulateneously resolving all five

of the critical issues facing these firms.

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Figure 1.2 Point Solution Approach to the Five Critical Issues

In order to ensure that the emergient properties of a new information technology

development process simulateneously resolve all five of the critical issues, general

systems theory requires that the relationships among the properties of the set of

components in the new solution process be adequately specified (Klir, 1985). Because

completely different emergent properties can result for the same component properties

combined in distinct ways, the overall structure of the relationships among components

determines the emergent properties. In general systems theory, the overall structure of

the relationships among the combined components is known as an architecture (Klir,

1985). Thus, as a precursor to specifying a new referent paradigm for the production

of software, a referent architecture of the new information technology development

process must be specified (see Figure 1.3).

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Five
Critical Issues

Emergent Properties

Architecture

Components

Figure 1.3 General Systems Theory Approach to
the Five Critical Issues

Given a referent architecture, one can explicitly evaluate the tradeoffs among the

properties of components that a specific design creates in order to determine the effect

of these tradeoffs on the emergent properties of a system solution. By capturing the

relationships among the properties of the components in the new information

technology development process, a referent architecture provides an important

conceptual link for simultaneously achieving (1) an increase in the flexibility of system

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

I

solutions, (2) a decrease in the cycle time to deliver new or to modify existing system

solutions, (3) an increase in the quality of delivered system solutions, (4) an increase in

the productivity of the software development process in delivering system solutions,

and (5) a decrease in the cost to deliver new or modified system solutions. Without an

effective referent architecture, software factories’ attempts to build flexible software

solutions will produce solutions that are too rigid, too expensive, and will take too long

to change (Allen and Boynton, 1991; Texas Instruments, 1994).

Purpose of Research

Lacking any theory on the appropriate structure of a referent architecture for

the rapid provisioning of information system solutions, an exploratory research

effort will be required to determine what architectural form a referent architecture

must take in order to provide the requisite speed, flexibility, quality, and cost

required in today’s dynamic business environment. In exploring what form the

referent architecture must take, one must remember the first principle of

architectural development is that form or structure should follow function (Klir,

1985). To determine the structure or form of a referent architecture, one must first

identify its functional requirements. As a starting point towards the development of

a new paradigm for the information technology development process, the purpose

of this exploratory research effort is to define a set of propositions that specify the

functional requirements of a referent architecture for the rapid provisioning of

system solutions in a changing business environment.

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Research Methodology

In order to define a set of propositions that specify the functional requirements

of a referent architecture for the rapid provisioning of information system solutions, a

scientifically-based research methodology capable of inductively generating

propositions is required. Within the category of inductive research approaches,

ethnography (Van Mannen, 1983), analytic induction (Miles and Huberman, 1984; Yin

1989), and grounded theory (Strauss and Corbin, 1990; Strauss, 1987; Glaser and

Strauss, 1967) represent research methodologies that are based upon the cannons of the

scientific method and have been successfully used to generate propositions (Eisenhardt,

1989). Although all three of these research methodologies are aligned along the

dimensions of purpose, data type, and data analysis method with the requirements of

this research study, only grounded theory is also aligned along the dimension of unit of

analysis (Strauss and Corbin, 1990).

Grounded theory is an iterative approach that uses constant comparison to

identify and validate the theoretical relevance of emerging concepts. By constantly

comparing the emerging set of relevant conceptual issues with the observations, prior

results reported in the literature, and existing theory, grounded theory not only

suggests the modification or addition of new conceptual issues but also helps ensure the

accuracy of the current set or propositions by triangulation across multiple sources

(Glaser and Strauss, 1967). Throughout the constant comparative process, theoretical

saturation will determine if the incremental knowledge generation is minimal because

the researcher is observing phenomena previously identified (Glaser and Strauss,

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

1967). If theoretical saturation has not been reached, theoretical sampling of the

modified set of relevant conceptual issues will point the researcher toward the next set

of data collection points.

When theoretical saturation has been reached, the constant comparative process

ensures that the resultant set of propositions is highly likely to be empirically valid.

Because the constant comparative process is so intimately tied to the evidence, the

likelihood that the process will produce a valid set of propositions is extremely high

(Eisenhardt, 1989). Although strong internal validity for the resulting set of

propositions is virtually guaranteed, the external validity of the resulting set of

propositions is dependent on the diversity of the data collection sites generated through

theoretical sampling.

Even with strong internal and external validity, the ultimate test of a set of

propositions is its ability to generate useful explanations, predictions, and a framework

for action for practitioners (Glaser and Strauss, 1967). Unless the resulting set of

propositions is comprehensible and makes sense to those practicing in the area, the

potential new insights generated from the resulting set of propositions will be useless

(Strauss and Corbin, 1990). To ensure that the resulting set of propositions is useful,

Eisenhardt has proposed that theory-building research be evaluated on its ability to

produce a set of propositions that is parsimonious, testable, and logically coherent

(Eisenhardt, 1989).

Following the cannons of grounded theory, an iterative, five-step research

agenda for the execution of this research study was specified. In addition to the five

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

steps, an initial step for bootstrapping the process was also enumerated. The actual

implementation of these five steps for each iteration of this research study will be

presented in subsequent chapters as this research effort unfolds. The steps in this

research agenda appear below.

Step 0: Review previous research to form initial implications

Step 1: Identify data collection sites using theoretical sampling

Step 2: Gather data

Step 3: Develop preliminary notions of propositions using open coding

Step 4: Synthesize preliminary notions into propositions using constant

comparison

Step 5: Validate propositions and check for theoretical saturation using constant

comparison

Dissertation Structure

The dissertation is presented in the following manner: Chapter II details the

research methodology used in the study. Chapter DI presents the initial literature

review and provides the development of the preliminary research proposition.

Chapters IV, V, and VI present the results of the three complete rounds of the research

agenda by providing a detailed presentation of the actual instantiation of each step in

each round. Chapter VII summarizes the complete set of propositions developed in

Chapters HI, IV, V, and VI. In Chapter Vm, the limitations, contributions, and future

research directions of this research effort are discussed.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER n

METHODOLOGY

Research Approach

Building new knowledge is a spiral process that involves both inductive

generalization and deductive verification (Wallace, 1971). Although deductive

verification can be rigorously established through the use of testing of data through

hypothesis, the logically flawed process of induction cannot provide a similar guarantee

for the result of knowledge generation activities. Lacking any logically consistent or

provably correct knowledge generation process, inductive researchers have often relied

upon conjecture, intuition, and divine insight as their sources for new theory and

knowledge (Eisenhardt, 1989). Although conjecture, intuition, and divine insight have

all been sited as sources for the discovery of new knowledge, the serendipitous nature

of these sources precludes their use as a research methodology in a rigorously designed

scientific study (Eisenhardt, 1989). Given the exploratory purpose of this research

effort, the research methodology selected for this study requires the use of a

scientifically based exploratory research methodology capable of inductively generating

propositions.

In addition to considering the specified purpose of a research study in the

selection of a research methodology, the researcher must also consider the type of data

(e.g., quantitative or qualitative) that will be gathered and analyzed in a research effort

(Yin, 1989). Within the social sciences, qualitative data analysis methodologies are

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

generally considered to interpret empirical data through means other than statistical

procedures or other methods of quantification (Strauss and Corbin, 1990; Strauss,

1987; Miles and Huberman, 1984).

Although no fundamental clash exists between the use of quantitative or

qualitative data in inductive research (Glaser and Strauss, 1967), inductive research

methodologies favor the use of qualitative data and qualitative data analysis methods

over quantitative data and quantitative data analysis methods for the generation of new

theory for three reasons. First, qualitative data provides “rich descriptions and

explanations of processes occurring in local contexts” (Miles and Huberman, 1984, p.

15) that are generally not capable of representation in a quantitative form. Second,

qualitative data analysis benefits from preserving the richness of the data, enabling the

researcher to develop meaningful, complex insights that “are more likely to lead to ...

new theoretical integrations” because qualitative data analysis “help(s) researchers go

beyond initial preconceptions and frameworks” (Miles and Huberman, 1984, p. 15) as

compared to solely converting the qualitative data into quantitative data through

preselected counting and measuring operations (Strauss, 1987). Third, qualitative

research methodologies produce findings whose validity can be judged based upon the

relevance, plausibility, and credibility of these findings to subject matter experts

(Strauss and Corbin, 1990; Glaser and Strauss, 1967).

Given the purpose of this exploratory research effort, a scientifically based

research methodology capable of inductively generating propositions from qualitative

data is required. Within the category of qualitative research approaches, ethnography

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

(Van Mannen, 1983), analytic induction (Miles and Huberman, 1984; Yin 1989), and

grounded theory (Strauss and Corbin, 1990; Strauss, 1987; Glaser and Strauss, 1967)

represent research methodologies that are based upon the cannons of the scientific

method and have been successfully used to generate propositions from qualitative data

using qualitative data analysis methods (Eisenhardt, 1989). Although all three of these

research methodologies are aligned along the dimensions of purpose (i.e., generating

propositions), data type (i.e., qualitative), and data analysis method (i.e., qualitative),

these three research methodologies differ significantly along the dimension of unit of

analysis (Markus, 1992). In ethnography and analytic induction, the unit of analysis

are reasonably well-defined entities, such as individuals or social units (e.g., work

groups or organizations) (Eisenhardt, 1989; Yin, 1989); whereas, in grounded theory,

the unit of analysis is the concept (Strauss and Corbin, 1990).

As a first step toward building a referent architecture for the rapid provisioning

of information system solutions, this research effort is focused on discovering the

functional requirements of that architecture. Because this referent architecture exists

independently of any organization or individual, the unit of analysis of this research

effort is a concept. Given the alignment between this research study and the grounded

theory research methodology along the dimensions of purpose, data type, data analysis

method, and unit of analysis, the grounded theory research methodology was selected

as the appropriate one for this effort.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Research Methodology

Qualitative research methodologies consist of four major components: data,

analytic or interpretive procedures, the form of the research findings, and criteria for

validation of the research findings (Strauss and Corbin, 1990). In order to understand

and properly follow a grounded theory based research methodology, one must first

understand how grounded theory instantiates these components and the

interrelationships that this instantiation creates among them. In this section, an

overview of grounded theory is presented that includes a comparison of grounded

theory to analytic induction. The specific research agenda used in this research study is

then presented.

Grounded Theory

Faced with the need to develop new knowledge or theories within their

discipline, Glaser and Strauss (1967) began an investigation to determine if a

scientifically based methodology could be devised for building new knowledge.

Starting with the question Where do discoveries o f new knowledge come from? Glaser

and Strauss (1967) determined that early efforts to determine the sources of new

knowledge were often misdirected by researchers reporting where they where when a

new insight or idea came to them. "After all, new ideas come from everywhere—

whether stepping off a street car or somewhere else" (Strauss and Corbin, 1990, p. 28).

While Strauss and Corbin (1990) point out that this statement is true, they also point

out that new ideas do not come to everyone about everything. Instead, they insightfully

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

point out that new ideas generally come to individuals who are deeply immersed in

their area of study wherever they may be physically.

Through immersion, the researcher must become not only steeped in the data

but also conversant in the models and meta-models within the area of study. When the

data, or some feature of the data, provides a puzzling or unexplained interpretation,

meaning, or pattern of events, the researcher must possess sufficient theoretical

knowledge and understanding to realize that the current models or meta-models of the

area of study are inadequate (Glaser, 1978). To develop theoretical sensitivity, a

researcher must gain theoretical knowledge and understanding by posing questions such

as the following: (1) What does the current model do?, (2) How is it conceived?, or (3)

What are its general propositions? Through posing and answering these questions, a

researcher might conclude that the current theoretical underpinnings of an area are

inadequate. Lacking a provably correct knowledge generating process, the researcher

is then faced with the question of where to begin in developing new or novel models.

For Glaser, Strauss, and a number of other qualitative researchers (Glaser and Strauss,

1967; Miles and Huberman, 1984; Yin, 1989), the answer to the question Where to

begin? lies with the collection and interpretation of data.

DatauCpllection

Empirical research exists because of our desire to build theories and models that

can describe, explain, or predict real world phenomena. By collecting data, or

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

observations, on the phenomenon of interest, researchers gather evidence that can then

be used in either theory building or theory testing procedures to help ensure that theory

mirrors the real world. In order to collect the data, the researcher must first identify a

set of data collection sites in which the phenomenon exists.

In statistics, the collection of individual units whose characteristics are to be

studied is known as the target population (Iman and Conover, 1989). Given the target

population, the researcher can then attempt to identify all of the individual units within

that population. Because of limitations in resources, identifying all of the individuals

within a target population usually is not possible (Iman and Conover, 1989). In such

cases, a population representative of the target population whose individual members

are known must be found. Because of the potential for the introduction of a bias, the

selection of the representative population, known as the sampled population, must

include a through analysis of the reasons that individual units would be represented in

the sampled population but not the target population.

In collecting data from a sampled population, limitations in resources often

preclude conducting a census (Iman and Conover, 1989). In such cases, sampling is

used to obtain a sample from the sampled population. To avoid the introduction of a

bias, or nonsampling error, in the sample, statistically based methods rely upon the use

of simple random sampling (Iman and Conover, 1989). The goal of random sampling

is to ensure that every possible sample, with the same number of observations, is just

as likely to be selected. In addition to providing a method for selecting samples,

statistically based procedures use methods for determining the number of samples to be

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

[

selected to ensure diversity. By ensuring the diversity of the sample, simple random

sampling enables valid projections to be made to the entire population from which the

sample was obtained (Iman and Conover, 1989).

In inductive research, limitations in resources can also preclude conducting a

census of the target population (Glaser and Strauss, 1967; Miles and Huberman, 1984).

In such cases, the selection of a sampled population and the use of sampling must be

employed. To avoid the introduction of a bias into a sample, inductively oriented

research methodologies must also rely upon the use of scientifically based sampling

procedures (Glaser and Strauss, 1967; Miles and Huberman, 1984; Eisenhardt, 1989;

Yin, 1989). In grounded theory, the selection of the target population, the sampled

population, and samples are all controlled by the process of theoretical sampling

(Glaser and Strauss, 1967). Because theoretical sampling is a data collection process

unique to grounded theory (Glaser and Strauss, 1967; Miles and Huberman, 1984),

understanding theoretical sampling requires an understanding of how theoretical

sampling is different from other data collection processes such as the data collection

process used in analytic induction.

As the data collection process of grounded theory, theoretical sampling is driven

by the relevance of the emerging concepts (Strauss and Corbin, 1990). In order to

recognize the potential relevance of an emerging concept, the grounded theorists must

first possess sufficient knowledge and insight, or theoretical sensitivity, of the area of

study (Strauss and Corbin, 1990; Glaser and Strauss, 1967). To gain an initial

immersion into the area under study, grounded theory relies upon a review of the prior

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

research as reported in the literature for the generation of a research framework or

initial proposition (Glaser and Strauss, 1967). Based upon the research framework or

initial proposition, theoretical sampling is used to determine the selection of the initial

target population, sampled population, and sample. As a starting point in its data

collection processes, analytic induction also utilizes a review of the prior research as

reported in the literature for the generation of a research framework or initial

proposition and the selection of the target population, sampled population, and sample

(Miles and Huberman, 1984; Delbecq, Van de Ven, and Gustafson, 1975).

In the actual collection of the data, the data collection techniques used in

grounded theory and analytic induction do not differ significantly. Grounded theory

and analytic induction both use personal interviews as their primary source for data

collection (Glaser and Strauss, 1967; Miles and Huberman, 1984). In addition to

personal interviews, grounded theory also uses literature reviews as a supplemental

source to provide insight or new ways of approaching the data (Strauss and Corbin,

1990).

In addition to providing a method for the selection of a sample, a data collection

process must also provide a method for determining the sample size. In statistically

based procedures, sample size is determined by the desired power and the effect size

(Iman and Conover, 1989). In inductively based procedures, an iterative approach that

cycles between data collection, analysis, and verification is executed until the data

collection process’s stopping rule is validated. The major difference between these two

data collection processes is that, with each successive iteration, grounded theory

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

expands until theoretical saturation of the relevant concepts is achieved, whereas,

analytical induction spirals towards an ever converging stable set of concepts based

upon consensus (Glaser and Strauss, 1967; Miles and Huberman, 1984; Delbecq, Van

de Ven, and Gustafson, 1975).

Guided by the relevance of emerging concepts, theoretical sampling requires a

re-assessment of the selected target population, sampled population, and sample with

each iteration of a grounded theory based study. If the assessment determines that the

target population, sampled population, or sample are not sufficient, theoretical

sampling requires the re-selection of these units. Although analytic induction also

allows new concepts to emerge with each iteration, analytic induction predetermines

and fixes the target population, sampled population, and the sample for a given study

(Miles and Huberman, 1984; Delbecq et al., 1975).

Analysis or Interpretive Procedures

The second component of a qualitative research methodology, analytic or

interpretive procedures, represents the set of techniques for conceptualizing data—

breaking the data down for the purpose of discovering and verifying theoretical

concepts, their properties, and the relationships among concepts (Strauss and Corbin,

1990). To interpret qualitative data, qualitative research methodologies tend to rely

upon a similar set of techniques for data conceptualization. These techniques include

coding, which can take the from of either margin notes or memo writing, integrative

diagramming, which can take the from of a causal network, and counting (Glaser and

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Strauss, 1967; Miles and Huberman, 1984). Although different qualitative research

methodologies share these same techniques, the actual application of these techniques

varies significantly by methodology depending on the essential analytic strategy of the

methodology (Markus, 1992).

In analytic induction, the essential analytic strategy is one of data reduction

accomplished by the use of all available data coupled with the use of negative cases to

distill the few theoretical propositions that hold in every case (Miles and Huberman,

1984; Yin, 1989). When the analytic inductionist finds cases that do not support the

emerging theoretical propositions, the relationships must be “thrown out for

insufficient evidence” (Eisenhardt, 1989, p. 542) or “the initial proposition must be

revised and re-tested with another set of cases” (Yin, 1989, p. 53). To support their

strategy, analytic inductionists are adamant that sampling and analysis must proceed

from “within case” to “across case” in order to preserve the “web of causality” in each

sampled case (Miles and Huberman, 1984; Eisenhardt, 1989).

In analyzing individual cases, analytic inductionists use open coding and causal

networks to capture the concepts and the causal relationships between concepts that

exist within a site. In open coding, “the data are broken down into discrete parts,

closely examined, and compared for similarities and differences Open coding ...

fractures the data and allows one to identify concepts, their properties, and dimensional

locations” (Strauss and Corbin, 1990, p. 62). In addition to open coding, analytic

inductionists develop causal models by linking the identified concepts into a “web of

causality.”

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

After coding all within-case concepts, analytic inductionists proceed to cross

case analysis. In cross case analysis, the goal of analytic induction is to distill the

causal relationships that hold in all of the studied sites (Eisenhardt, 1989). In addition,

verification of the relevance of a specific concept is established by counting the

incidence of the occurrences of the concept across cases (Miles and Huberman, 1984).

To the analytic inductionists, data or observations are valued because they represent the

evidence that constitutes the proof of the relevance of the concept.

In grounded theory, the essential analytic strategy is one of synthesis

accomplished by the selective use of available data coupled with the use of negative

cases to generate insights into potential theoretical propositions (Glaser and Strauss,

1967). In fact, grounded theorists actively seek out negative cases as a way to generate

insights that could expand, enlarge, or enrich the emerging theoretical propositions.

Naturally, the insights generated from such a tenuous source are not incorporated into

the emerging theoretical propositions unless they are verified by means of further data

collection and analysis. However, the value of the seeking out negative cases lies in

suggesting to the researcher “the most opportune places, persons, or documents to go

to for evidence of emerging concepts” (Strauss and Corbin, 1990, p. 181).

To support their strategy, grounded theorists move freely across the analytic

inductionists unit of analysis in an attempt to capture all the relevant theoretical

concepts, even though not all of them might be observed in every given setting

(Eisenhardt, 1989). Where analytical inductionists use diversity within their

predetermined and fixed sample to reduce the set of theoretical propositions, the

23

with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

grounded theorist deliberately seeks out diversity to expand the emerging theoretical

concepts wherever such diversity can be found. In analyzing new cases, grounded

theorists use open coding to identify potential theoretical concepts and integrative

diagramming to help clarify the relationships between emerging concepts (Strauss and

Corbin, 1990).

To the grounded theorists, the relevance of a concept is based upon what it adds

to the theoretical understanding of the emerging theory or model regardless of the

number of times that the concept is observed (Strauss and Corbin, 1990). Because

open coding can only suggest new concepts, grounded theorists rely on constant

comparison of emerging new concepts with observations, prior results reported in the

literature, and prior theory to verify the relevance of emerging propositions (Glaser and

Strauss, 1967). Through the use of a systematic set of constant comparative

procedures, the grounded theorists build theoretical propositions that are already

provisionally tested or grounded in the phenomenon they represent by triangulation

across multiple sources (Glaser and Strauss, 1967). By continuously comparing new

concepts in the emerging theory with the study’s observations, prior results reported in

the literature, and prior theory, both the internal validity and the external validity of the

emerging theory are ensured within the scope of the theoretical sampling (Eisenhardt,

1989).

With each iteration, the new theoretical propositions are sorted based upon the

perceived relevance to the emerging theory. By identifying the relevance of emerging

theoretical propositions through constant comparison, grounded theory allows the

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

grounded theorists to selectively gather new data to move beyond the data at hand

while still remaining thoroughly grounded in them (Glaser and Strauss, 1967). To the

grounded theorists, data or observations are valuable because observations suggest new

concepts, not because the collective weight of the observations constitutes the proof of

a concept.

Based upon the cannons of grounded theory, a model of the research output for

this research study was developed and is shown in Figure 2.1. In this model, the

Crirical Emergent
Issues Properties

i
i
i
r
i

r Implications ' Notions r Propositions ^
^ >

Figure 2.1 Model of Research Output

implications of the issues identified during each research round form the basic notions

for emerging concepts. As these notions are explored through theoretical sampling, the

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

relevance of emerging propositions is established through constant comparisons of

emerging new concepts with observations, prior results reported in the literature, and

prior theory. Once the relevance of these new propositions has been established, the

implications generated by these new propositions form the basic notions for the notions

of the next research round.

Form of the Research Findings

In addition to their agreement on the purpose of a research methodology (i.e.,

generating new knowledge), analytic inductionists and grounded theorists also agree

that new knowledge should be described in terms of the relationships between concepts

and that the products of their efforts can be, but need not be, written up in the form of

formal propositions (Glaser and Strauss, 1967; Eisenhardt, 1989). Although analytic

inductionists and grounded theorists agree on the form that their findings should take,

they do not agree on the nature of the concepts presented in their respective findings.

Based upon the discussion of the difference in these methodologies relative to their

respective essential analytic strategy, the differences in the nature of the concepts

presented in analytic induction and grounded theory could be classified as the

difference between a descriptive approach versus a prescriptive approach respectively.

In analytic induction, Miles and Huberman (1984) discuss three kinds of

conceptual categories: (1) descriptive codes that entail no interpretation, (2) interpretive

codes that reflect an understanding of local dynamics, (3) and explanatory codes that

illustrate an emergent pattern that the analyst has deciphered while unraveling the

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

I
meaning of local events and relationships. By contrast, Glaser (1978) distinguishes two

type of codes: (1) substantive and (2) theoretical (1978). Substantive codes

conceptualize the empirical substance of the area of research. Theoretical codes

conceptualize how the substantive codes may relate to each other as hypotheses to be

integrated into theory.

Although a direct comparison between these two sets of conceptual categories

would be difficult if not impossible, Strauss makes it quite clear that there is no place

in grounded theory for what Miles and Huberman call descriptive codes:

A word should be said here ... about the difficulties novices often have
in generating genuine categories. The common tendency is simply to
take a bit of the data and translate that into a precis of it. In effect they
are, as are many researchers who use other methods of analysis,
remaining totally or mostly on a descriptive level, not much different
from the actors themselves. (Strauss, 1987, pp. 29-30)

In short, while the propositions generated by analytic induction and grounded

theory are very similar in form, they differ significantly in content. In analytic

induction, all three layers of codes remain relatively close to the data of the particular

cases, in contrast to the substantive and theoretical codes of grounded theory, which

rise above the particulars of individual cases and synthesize them. In this research

study, the research findings will be reported in the form of formal propositions (see

Figure 2.1).

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Validation of Research Findings

As Eisenhardt (1989) points out, there is no generally accepted set of guidelines

for evaluating theory building research. Although grounded theorists and analytic

inductionists concur that theory building research should be evaluated on the two broad

criteria: (1) outcome, e.g., the product, and (2) process, e.g., the procedures

performed by the researcher, grounded theorists and analytic inductionists differ

significantly on the specific criteria that should be used because the content of the

products and the procedures prescribed by each group differ (Markus, 1992).

For the analytic inductionists, the appropriate criteria for evaluation of research

findings is based upon “rules of evidence” and “proof.” For instance, both Yin (1989)

and Eisenhardt (1988) state that a researcher must display sufficient evidence in support

of the theory, and Miles and Huberman believe that the researcher should provide ways

for others to “audit” their research procedures:

One has to begin ... by describing one’s procedures clearly enough so
that others can reconstruct them and, further down, the line,
corroborate them and do secondary analysis. ... [T]here has to be an
“audit trail.” Without a trail, one cannot determine the dependability
or the confirmability of the findings ... and verify the accuracy and
legitimacy of the procedures used to establish the researcher’s findings.
(Miles and Huberman, 1984, p. 224)

For the grounded theorists, the appropriate criteria for evaluating of the

research findings is based upon “plausibility” and “credibility.” Glaser (1987) states

that “Unfortunately, grounded theory is still read by many as factual descriptions”, and

Strauss states that:

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The credibility of the theory should be won by its integration, relevance
and workability, not by illustration used as if it were proof. ... [A]s
grounded concepts they are not proven; they are only suggested. ...
Proofs are not the point. It is not incumbent upon the analyst to
provide the reader with description or information as to how each
hypothesis was reached. Stating the method in the beginning or
appendix is sufficient, perhaps with an example of how one went about
grounding a code and an hypothesis. (Strauss, 1987, p. 134)

Similarly, Corbin and Strauss do not require an “audit trail,” but only

“reasonability good grounds” for accessing the quality of a researcher’s procedures:

However, even in a monograph ... there may be no way that readers
can accurately judge how the researcher carried out the analysis. The
readers are not present during the actual analytic sessions or their
sequence. ... The detail [the researcher provides on the method] need
not be great even in a monograph. But it should provide some
reasonably good grounds for judging the adequacy of the research
process. (Strauss and Corbin, 1990, pp. 16-17)

In addition, grounded theorists and analytic inductionists differ significantly on

the criterion for selecting a group of “people in the know” to judge the product, e.g.,

the theory itself, based upon each group’s respective criteria for evaluating theory

building research (Markus, 1992). For the analytic inductionists, the relevance of the

theory should be judged based upon its primary value to the academic communitity

(Miles and Huberman, 1984; Eisenhardt, 1988; Yin, 1989). In constrast, grounded

theorists believe that relevance of the theory should be judged by knowledgeable

participants who are the subjects of the research, rather than other researches:

Why generate grounded theory? Why bother, when in each area of
life there are people in the know? These people are so knowledgeable
that they think they they can predict, explain and understand just
about everything that happens in their terrain, field, area or world.
They are the leaders and the consultants; ... What the man in the
know does not want is to be told what he already knows. What he
wants to be told ... [is] how to handle what he knows with some

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

increment in control and understanding of his area of action. ... [The
grounded theorists provides this when their theory] fits, works and is
relevant. The man in the know spots these criteria instantly when the
theory he hears rings true and relevant. “That’s the way it is,”
“That’s right,” are comments we often hear upon presenting a
grounded, substantative theory to the knowledgeable. (Glaser, 1987,
pp .12-13)

For the grounded theorists, verifying that the emerging theory is grounded in

the world in which the problem exists represent validation. To validate that the

propositions generated during each round of this research effort are grounded in the

world in which the problem lives, a set of knowledgeable participants who where the

subjects in the research round will be selected and asked to judge the validity of the set

of generated propositions at the end of each round.

Research. Agenda

Based upon the cannons of grounded theory, an iterative, five-step research

agenda for the execution of this study was specified (see Figure 2.2). In addition to

these five steps, an initial step that allows for the bootstrapping of the whole process

was also enumerated. A brief explanation of each step accompanies the presentation of

this research agenda.

Step 0: Review previous research to form initial implications

In order to develop the initial implications for this exploratory investigation, a

literature review was conducted to establish a working knowledge of the referent

domains o f information systems architectures, productive strategies for the production

of goods and services, and the application o f these two domains to the software

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

development process. Through this immersion in th£ literature, the theoretical

sensitivity of the researcher became grounded in the area of study. By starting with a

properly grounded initial proposition, a researcher is able to specify the type of

organization to be approached and the type of data to be collected. Without a research

focus, an exploratory research study can easily become overwhelmed by the data.

Step 1: Identify data collection sites

Theoretical sampling was used to identify the set of data collection sites. In

theoretical sampling, data sites are identified for their potential ability to provide

relevant insights into the emerging concepts. In this research study, those

organizations investigating architecturally based solutions to the rapid provisioning of

information systems solutions where identified as the initial target population. With

each subsequent iteration, the evolving relevance of new concepts controlled the

selection of the sample (Identified as 1 in Figure 2.2).

Step 2: Gather data

During each iteration, the current set of emerging relevant concepts served to

drive the selection of the questions asked of participants through personal interviews.

The questions and each participant’s responses to them where recorded by the

researcher in the form of an interview transcript. Once an interview transcript was

determined to be correct and complete by the interview participant (i.e., verification),

the interview was coded (Identified as 2 in Figure 2.2).

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Step 3: Analyze data and develop preliminary notions of propositions

The process of coding the respondent’s interviews into a set of preliminary

notions was accomplished by open coding—breaking the data down into discrete parts

and looking for similarities and differences within the observations (Strauss and

Corbin, 1990). In this study, the open coding of the interview notes took the form of

margin notes and interview write-ups. As a result of this coding process, a preliminary

set of propositions was identified and formally presented for each iteration in this study

(Identified as 3 in Figure 2.2).

Step 4: Synthesize preliminary notions into propositions
using constant comparison

The synthesis of the preliminary notions into a set of propositions was

accomplished by comparing the preliminary notions with prior results reported in the

literature and existing theory. By juxtaposing the preliminary notions with prior results

reported in the literature and existing theory, grounded theory can establish the

theoretical relevance of these notions. When the preliminary notions were supported

by the prior results reported in the literature and by existing theory, the researcher

interpreted this support as an indication of the relevancy of the notions and an absence

of researcher bias. When the preliminary notions were not supported by the prior

results reported in the literature and in existing theory, the researcher exercised

extreme care in validating the existence and relevancy of the notions with subject

matter experts to ensure that the notions were not a product of researcher bias

(Identified as 4 in Figure 2.2).

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Step 5: Validate propositions and check for theoretical saturation
using constant comparison

To validate that the set of propositions generated during each round were

properly grounded and complete, a set of knowledgeable participants who where the

subjects in the research round was selected and asked to judge the validity of the set of

generated propositions. These results are reported at the end of each round. To verify

that the propositions were accurately captured and theoretical relevant, the set of

emerging propositions was verified by triangulation across the opinions of subject

matter experts, the empirical observations collected during this study, the prior results

reported in the literature, and the existing theory reported in the literature during the

synthesis step during each round (Identified as 5a in Figure 2.2).

During the process of validating the generated propositions, the set of

propositions were also tested for completeness (Identified as 5b in Figure 2.2).

Comments such as “That’s true, but what about [this issue]” or “That’s true, but how

are you going to deal with [this issue]” suggested that the generated propositions were

accurate but incomplete in the eyes of the knowledgeable participants. When the set of

generated propositions was found to be incomplete either by the set of knowledgeable

participants or through constant comparison with the empirical observations collected

during this study, the prior results reported in the literature, or the existing theory

reported in the literature, the researcher determined that theoretical saturation had not

been reached. In general, a set of propositions could be found to be incomplete

because (1) the emergent properties of the whole set were deemed insufficient (i.e

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

necessary but not sufficient) for addressing the five critical issues (i.e., because of a

lack of breath), or (2) because the set of propositons were deemed insufficient in their

specification of the level of detail of the functional requirements (i.e., because of a lack

of depth). In either case, the set of implications was modified and theoretical sampling

used to point the researcher towards the next set of data collection points. When

theoretical saturation had not been established, the research effort returned to Step 1 to

begin a new iteration of the research agenda.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Generate, Synthesize, and Validate for Accuracy

Generate and Synthesize Propositions

Implications

Data
Sources

Preliminary
Notions

Synthesized
Propositions

Emergent
Properties

Critical
Issues

Data
Collection

Sites

Set of
Validated

Propositions

5b

Figure 2.2 Research Methodology for Determining the Functional
Requirements for a Referent Architecture

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER m

THE FIRST ROUND

Given the necessity of a general system theory approach, the first implication of

this research effort is that a general systems theory solution requires the specification of

an appropriate referent architecture. Working from this implication, the first round of

this research study undertakes a literature review to establish a working knowledge of

the referent domains of information systems architectures, productive strategies for the

production of goods and services, and the application of these two referent domains to

the software development process.

Information Systems Architectures

As computer-based information systems solutions have moved from single

hardware-dependent programs to enterprise-wide suites of applications, the need to

refine and understand the dimensions of these systems and the relationships between

these dimensions has grown correspondingly. In order to properly manage the

increased size and complexity of software based systems, organizations find that they

must possess a blueprint (or architecture) that can guide them in defining the policies,

rules, and requirements of their processes for analyzing, planning, designing, and

implementing or acquiring system components from the perspective of the overall

resultant system or enterprise perspective (Stecher, 1993).

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

II

Because the architecture "specifies how and why the pieces fit together as they

do, where they go, when they're needed, and why and how changes will be

implemented" (Allen and Boynton, 1991, p. 435), developing an information system

without the perspective provided by architecture will result in chaos (Zachman, 1987).

To achieve a general systems synergy, the architecture must be based upon a unifying

"logical construct for defining and controlling the . . . integration of all the components

of the system" (Zachman, 1987, p. 276). Without an architecture, developing "the set

of policies and rules that govern an organization's (process for determining the) actual

and planned arrangements of computers, data, human resources, communication

facilities, software, and management responsibility" (Allen and Boynton, 1991, p. 435)

becomes impossible.

The realization of the importance of architecture in modern computer-based

information systems emerged to describe the relationship between components at a

hardware level. When IBM introduced the System/360 in 1964, the fact that the same

hardware components and the same relationships between these components was

implemented from the smallest to largest processor in the System/360 family line was a

remarkable feature (Stecher, 1993). By specifying the same architecture throughout the

System/360 line, IBM guaranteed that hardware dependent programs were portable

across all processors in the System/360 line.

Similarly, as advances allowed for complied languages, hardware independent

programs were developed with a file-oriented approach that tightly bound global data to

the defining application. By separating hardware and software into two independent

37

i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

!i

dimensions, information systems professionals were now able to identify not only the

hardware's architecture, but also a single dimension software architecture. By using

top-down functional decomposition, information systems professionals developed

program modules that focused on defining the temporal sequence of the operations

performed by the computer and represented these steps with flowcharts. To represent

the software components and relationships between components within a specific

programmed application, information systems professionals developed data flow

diagrams and structure charts (Yourdon and Constantine, 1975).

Although a single dimension software architecture proved adequate for a set of

completely independent applications, the tight binding between the data and the

functionally decomposed program required under a single dimension software

architecture resulted in severe problems as multiple interdependent applications that

took slightly different views or perspectives of the organization arose. Problems with

redundancy, inconsistency, and inflexibility led to the development of data base

management technology aimed at overcoming these limitations by separating the

program and the data into two independent dimensions (Codd, 1971). The new

dimensions, representing the data components and the relationships between them,

became known as the data architecture or information architecture. In order to build

software applications based upon the new two-dimensional architecture for the software

component of an information system, information systems professionals employed a

number of data centric software development methodologies such as Business Systems

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Planning developed by IBM (1984) and Information Engineering developed by James

Martin (1990).

Coupled with the ability to separate the data from the program came the ability

to place the data and program components on completely independent hardware

platforms. Linking the independent program and data components, each with its own

architecture, across platforms led to the recognition that the communication

relationships between these two dimensions could also be described using an

architecture-specifically a communications architecture or more appropriately meta-

architecture. An early example of such an architecture, designed to permit the

communication between on-line peripherals, is EBM’s Systems Network Architecture

(Stecher, 1993).

As the importance of computer networks grew, the ability to distribute and to

link diverse software applications across heterogeneous hardware architectures became

essential. To overcome the implementation specific constraints imposed by the selected

implementation technology, information system professionals defined a technology

architecture that specified the technology and its interrelationships. IBM's Systems

Application Architecture, introduced in 1987 and specifically designed to support the

porting of applications across diverse hardware implementations, is an example of a

technology architecture (Wheeler and Ganek, 1988).

Because the emergence of each new technology for building computer-based

information systems gives rise to a corresponding need to specify an architecture for

the new technological dimension and refine the meta-architectures encompassing it, the

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

historically driving force in the development of information systems architectures has

been technology (Stecher, 1993). Although technology can provide wonderful

capabilities that can enable business solutions, the mere acquisition of technology alone

does not ensure these solutions. Only when technology is combined under an

appropriately defined enterprise oriented architecture do the desired emergent

properties of the overall system appear (Texas Instruments, 1994).

Today's problem is not that organizations lack information systems architectures

(cf. Zachman, 1987; Sowa and Zachman, 1992; CIM-OSA, 1993), but that the

information system architectures that exist are too rigid and maladaptive to support the

development of new, effective system solutions in a time frame necessary to enable the

business change required for a competitive posture (Allen and Boynton, 1991). To

understand why the structure of current information systems architectures is too rigid

and maladaptive, one must examine not only the process under which they are

constructed, but more importantly the various productive strategies under which the

current process itself is defined.

Productive Strategies

Although change can be viewed in a number of different ways, one of the most

useful ways to view change in order to understand its effects on organizational strategy

and structure is through the product-process change matrix (Boynton and Victor, 1991;

Pine, 1993; Boynton, Victor, and Pine, 1993). The idea behind the product-process

change matrix is that changes in market structure can be decomposed along the two

40

with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

independent dimensions of product change and process change. As defined by Boynton

and Victor (1991), product change includes changes required by demands for new

products or services based upon competitor moves, shifting customer preferences, and

the firm's entry into new markets. Process change is defined as changes in the

"organizational capabilities resulting from the people, systems, technologies, and

procedures used to develop, produce, market, and deliver products or services"

(Boynton, Victor, and Pine, 1993, p. 42).

Within each of these two dimensions, change itself is further classified as either

dynamic or stable. Boynton and Victor (1991) classify change as dynamic if the

change is rapid, revolutionary, and generally unpredictable, as opposed to stable

change which is slow, evolutionary, and generally predictable. With the ability to

classify product change and process change as either stable or dynamic, Boynton and

Victor (1991) are able to develop a two-by-two cell product-process change matrix. As

refined by the work of Pine (1993), Boynton, Victor, and Pine's (1993) product-

process change matrix is shown in Figure 3.1. A review of the product-process change

matrix in Figure 3.1 reveals that product change and process change can be viewed as

independent of one another and that in combination with the type of change can be

viewed as falling into one of four possible categories or quadrants.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

• M

£
c
>s
o

p

e
«

jb
O

a
■o
p

p
Z
13
V)

Mass Invention
Customization

Mass Continuous
Production Improvement

Stable Dynamic

Process Change

Figure 3.1 Product-Process Change Matrix

Before reviewing the competitive strategies defined by the product-process

change matrix, an important point helpful in understanding the product-process matrix

needs to be made. The point is that, in reality, the type of change experienced by any

one specific firm lies along a continuum from very stable change to very dynamic

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

change rather than at the representative average determined over a number of firms. In

other words, all firms do not discretely cluster in the center of the four quadrants of the

product-process change matrix. Instead, each of the four quadrants of the product-

process change matrix represents an idealized description or exemplar of a specific

organizational structure and strategy. The value of these idealized descriptions is that

they provide firms with the ability to assess their own competitive positions relative to

market structure, to develop a vision of the structure and strategy their firms must

implement to successfully compete in the future, and to develop transitional plans for

migrating to that new vision (Boynton, Victor, and Pine, 1993). By providing these

capabilities, the product-process change matrix gives managers the ability to

proactively plan for change.

Pine (1993) has identified two major competitive strategies based upon the

product-process change matrix. The first major strategy is what has been historically

known as the mass production and invention strategy and is based upon the linkage of

the invention quadrant with the mass production quadrant. The second major strategy,

based upon the linkage of the continuous improvement and mass customization

quadrants, represents the new competitive strategy of mass customization and

continuous improvement. In order to understand either major strategy, one must first

understand both of the individual quadrants involved in the strategy and then the

synergistic linkage that exists between the two quadrants.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The Mass Production and Invention Strategy

Historically, the craft, or job shop, approach to production represents the most

common form of the economic production of goods and services (Thompson, 1967;

Blau and Schoenherr, 1971). The craft production strategy, characterized by its ability

to produce unique or novel products on a job-by-job basis, is predicated upon the idea

that tools or machines and processes can be use to augment the craftperson’s skills,

thereby allowing the craftperson to produce a wide variety of unique goods or services.

The more flexible the tool and the more widely applicable the process, the more they

contribute to the craftperson’s capacity for productive expression (Piore and Sable,

1984). At the extreme, the possibilities of the craft based approach are ultimately

limited only by the imagination and skill of the craftperson for a given type of material.

Because of the ability to produce unique or one-of-a-kind goods, the purest form of

craft based production is also known as invention.

For the craft based organization, building production or process expertise aimed

at any one specific product represents a strategy counterproductive to its long run

viability. Instead, successful craft based organizations hire highly skilled, creative

craftspeople and provide them with sophisticated general-purpose tools. Lacking

standardized procedures, craft organizations also grant employees a high degree of

autonomy over the production process, while simultaneously charging them with the

responsibility for each project's success. Success, therefore, requires not only the

cooperation of craft employees but also their collaboration on a project by project basis

(Burns and Stalker, 1961).

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The ability of the craft-based approach to produce a wide and constantly

changing assortment of goods and services for unstable markets ensures its viability

even today. When the creation of specialized goods in small quantities is required, the

highly skilled, general purpose labor and machines of the craft based organization

provide the best option. By allowing craftpersons the flexibility to use their skills and

general-purpose tools to explore and translate ideas into novel products and processes,

the craft-based approach is uniquely designed to compete under the conditions of

dynamic change.

The trade-off for this flexibility is, of course, cost. Because of the long learning

curves of the craftpersons (through apprentice programs) and the labor intensive nature

of craft production, goods and services produced under the craft based approach are

produced at low levels of productivity resulting in high costs (Piore and Sable, 1984).

As long as the ability to obtain the novel product or service is worth more than the

corresponding cost of its production, the craft based approach adds value to the overall

economy.

In its purest form, the craft based organization provides the foundation for the

invention strategy. To compete under the invention strategy, organizations must be

designed to take advantage of conditions involving both dynamic product and process

change. The pure craft based organization with its highly skilled, creative employees,

sophisticated general-purpose tools, highly decentralized, autonomous decision making

process, and flexible workflows provides the organizational structure necessary to

pursue the development of new ideas and to support the investments in changing

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

process capabilities required under dynamic product and process change (Piore and

Sable, 1984). Based upon these capabilities, Boynton, Victor, and Pine (1993) select

the invention based organization as the exemplar for the dynamic product and dynamic

process change quadrant in their product-process change matrix.

The mass production strategy, or Fordism as it is also known, grew out of the

need to produce a large volume of a product at a very low cost. Within a given

technology, manufacturing firms, as exemplified by Henry Ford's automobile

manufacturing company, realized that the only way to achieve large volumes at a low

unit cost is to create manufacturing processes that produce standardized products with

great operational efficiency. These firms also realized that the key to achieving the

operational efficiency required by the mass production strategy is to maximize the

through-put of the manufacturing facility, through-put being defined as the number of

units produced over a given period of time (Blau and Schoenherr, 1971). By focusing

on operational efficiency, firms using the mass production strategy are able to take

advantage of economies of scale.

Firms learned that the best way to maximize through-put is to standardize not

only the product produced but everything else as well. Through standardization, the

handwork tasks of the craft based approach can be decomposed into simple steps that

can be performed faster and more accurately by specially built machines dedicated to a

specific task than by human hand (Piore and Sable, 1984). The more specialized the

machine, the faster it works and the less specialized its operator needs to be. The

trade-off for this reliance on specialized dedicated machines is a loss of flexibility.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Long, uninterrupted production runs on the specialized dedicated machinery become

the key to achieving the through-put required for mass production. Shutting down a

line to make slight adjustments for quality control reasons or to change over to

production of a different product results in a decrease in through-put and is therefore

strongly discouraged.

In its purest form, the operating goal of the mass production firm becomes the

production of a standardized product using standardized interchangeable parts

assembled within a standardized process flow controlled through a standardized or

centralized structure that uses standardized labor operating standardized (i.e.,

dedicated) machines that are part of a standardized line in a standardized factory.

Standardization is so important to the mass producer that the methodology for

standardizing processes by finding and eliminating inefficiencies in tasks through

meticulous time and motion studies, known as "scientific management," is synonymous

with this form of production (Taylor, 1911). The mass production firm, with its

emphasis on achieving operating efficiency through ubiquitous standardization, creates

a production based approach capable of producing a large volume of a low unit cost

general good or service (Piore and Sable, 1984).

By decomposing and standardizing each and every task in the production

process, mass production firms are able to extend the degree of specialization of labor

to new levels. Instead of employees being specialized based upon their craft knowledge

of production processes, employees are specialized based upon their ability to execute a

single repetitive task that is predefined by a single central authority to ensure its unity

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

within the overall standardized production process. In making the transition to task

focused specialization, mass production firms are able to explicitly separate the roles of

thinking and doing and redefine the role of the mass production employee as

subordinate to the standardized product through the repetitive tasks they perform (Piore

and Sable, 1984). By lowering the learning curve/skill set required for doing and

relegating the role of doing to labor, mass production firms are able to transform labor

into a interchangeable, standardized part itself. The ability to treat labor as an

interchangeable, standardized part allows mass production firms to employ the

increased number of workers needed to staff their larger production facilities with little

or no training.

Because of the operational efficiency achieved under mass production, the total

productivity, as measured by through-put, of a group of workers in a mass production

facility not only exceeds the total productivity of an equal number of workers in a craft

based facility, but also increases at a higher rate the larger the size of the facility. As

long as completely stable demand for a large volume of a standard product or service

prevails in a market, mass production presents an effective means for meeting that

demand at a low unit cost (Chandler, 1962). Under market conditions favorable to

mass production, the increased productivity of mass production labor results not only in

lower prices for mass produced products and services, but also in a corresponding

increase in the wages paid to mass production labor. Within the general economy, the

mass production firm's proficiency in simultaneously decreasing the price of consumer

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

goods and services while increasing the level of employment and wages in the general

labor market results in an increased standard of living.

In its purest form, the mass production organization works best for a completely

stable product produced by a completely stable process. Because changes in either

product or process make specialized dedicated machinery obsolete, causing costly

retooling of facilities, change of any kind works against the mass production approach.

When competitive advantage is based upon delivering a large volume of a low cost

standard good or service, the mass production strategy, with its centralized,

hierarchical control system, is the production strategy of choice. Based upon the mass

production strategy's ability to excel in the production o f goods or services under the

conditions of stable product change and stable process change, Boynton, Victor, and

Pine (1993) selected the mass production organization as the exemplar for the stable

product and stable process change quadrant in their product-process change matrix.

Together, the invention quadrant and the mass production quadrant form the

mass production and invention strategy identified by Pine (1993). After reviewing the

characteristics of the individual invention and mass production quadrants, one might

first conclude that there is no synergistic link between these two quadrants because they

seem to be the antithesis of one another. The invention quadrant, designed to deal with

dynamic product and dynamic process change, appears to be at the opposite end on the

spectrum when compared with the mass production quadrant, designed to deal with

stable product and stable process change. Furthermore, the craft based approach uses a

decentralized organizational structure that combines thinking and doing through

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

collaboration, while the mass production based approach uses a centralized

organizational structure that separates thinking and doing though competition (Piore

and Sable, 1984). The larger the number of dimensions examined, the more evident

the contrary nature of these two approaches becomes. Yet, the reason for the

synergistic linkage between these two approaches can be paradoxically found in one of

these contradictions.

Although the mass production organization is designed to function under

conditions of limited change, the mass production organization must occasionally

completely retool for new products made using completely new processes as shifting

markets, intensifying competition, and advancing technologies make the old products

and processes obsolete (Chandler, 1962). Because the mass production organization

uses specialized machines to produce general goods, it is not capable of developing and

producing the new specialized machines and processes necessary for retooling.

Instead, the mass production organization must rely on the invention organization to

provide the new specialized machines and processes it requires (Piore and Sable,

1984). Because markets are not completely stable structures immune to change, the

symbiotic relationship between the invention quadrant and the mass production

quadrant exists to provide the mass production quadrant with one way to deal with

dynamic change through a phased approach.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The Mass Customization and Continuous
Improvement Strategy

The continuous improvement approach for the production of a stable good

developed as a response to the mass producers needs to increase quality and deal with

dynamic process change in a more incremental manner (Womack, Jones, and Roos,

1990). The continuous improvement organization, like the mass production

organization, operates in a product market where large volumes of a stable goods

compete on price. To remain competitive, both organizations must constantly find new

ways to reduce their products’ cost. Although both organizations compete in the same

market, the way they compete is significantly different, a difference that is based upon

each organizations' respective approach to determining product cost.

For a firm competing in a market that demands large volumes of a stable

product or service, unit cost represents only one dimension in the purchase decision.

As anyone who has ever owned a car knows, the purchase price or unit cost of the car

really only represents part of the total cost of owning the car. The cost of

maintenance, taxes, fuel, and insurance must also be considered when purchasing the

car. Because the total cost of owning the car is ultimately that which concerns a buyer,

the quality of the car and the technology contained in it also become significant

dimensions. The realization that the total cost, rather than the unit cost, of a product is

ultimately important is key to understanding the difference between the continuous

improvement and the mass production organizations.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Mass production works because manual tasks can be decomposed into simple,

repeatable steps-steps that can be automated by building specialized dedicated

machinery that can be operated by unskilled operators over long production runs.

Without the ability to decompose and automate the manual production tasks, mass

production will not work. By decomposing a product’s production process into a fixed

sequence of automated steps, mass production transforms these individual steps into the

defining operational characteristic. To determine the cost of a product, a mass

producer simply totals the costs of "doing" the individual automated steps involved in

the production of the product. The accuracy of the summation presupposes that all of

the costs of production are captured in the "doing" steps—a supposition that is not

correct.

Generated by the need to have extra working capital for work in process

inventory sitting idle between "doing" steps, carrying costs represents one cost not

captured by summing the costs of "doing." Other costs not captured are the cost of

machine downtime for quality control adjustments and setup, the cost of reworking or

scraping a defective part, and the cost of waiting for a machine to be repaired

(Drucker, 1995). The failure of the summed cost of the individual steps to accurately

capture all the costs of production results from the inability of the decomposition

approach to account for all of the costs (Johnson and Kaplan, 1987). No one in the

mass production organization thought of designing a "doing" step for idly holding

inventory between production steps or for producing a defective part. Yet, both of

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

these activities exist within the total production process. To properly determine the

cost of production, the total cost of operating the production process must be captured.

The continuous improvement organization recognizes that determining and

controlling the total cost of the production process is important. To determine all of

the costs, the continuous improvement organization focuses on finding not only the

costs of "doing" but also the costs of the cracks that lie between the "doing" steps. By

integrating both the steps and the cracks into a single unified view, the continuous

improvement organization builds a global process view that cuts across the individual

steps defined by functional decomposition. The key to building a global view of the

total production process is to organize employees into cross-functional collaborative

teams of functional specialists (Nonaka, 1988; Adler, 1991). These teams that can now

focus not only on the individual functional steps but also on the linkages between them.

By managing both the steps and the linkages between them, the cross-functional teams

of the continuous improvement organization are able to make process based

adjustments that achieve efficiency, quality, and ongoing product improvements

simultaneously (Womack, Jones, and Roos, 1990).

The continuous improvement organization's focus on managing the total cost of

production through a cross-functional process approach allows the continuous

improvement organization to incrementally address dynamic process change rather than

ignoring process changes until a total retooling is economically required. Because the

continuous improvement organization can effectively integrate dynamic process change

into an existing process, the continuous improvement organization can produce large

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

volumes of a stable product capable of not only competing on price, but also having

superior quality and technology than a corresponding mass produced product. The

ability of the continuous improvement organization to produce goods or services under

the condition of stable product change and dynamic process change led Boynton,

Victor, and Pine (1993) to select the continuous improvement organization as the

exemplar for the stable product and dynamic process change quadrant in their product-

process change matrix.

The mass customization approach for the production of goods and services was

developed as a response to the firm's need to simultaneously increase flexibility,

decrease cycle time, increase quality, increase productivity, and still maintain low

costs. Based upon the success of the continuous improvement organization at

increasing quality while maintaining low costs, firms realized that the tradeoffs between

flexibility, cycle time, quality, productivity, and cost inherent in the mass production

strategy could be overcome. By breaking the tightly bound relationship between

product and process present in the mass production approach, the continuous

improvement organization found that there were multiple ways to produce the same

product with some process combinations that resulted in higher quality products than

others. With product and process decoupled, firms also realized that a standardized set

of processes could be used to produce a wide variety of products (Boynton and Victor,

1991).

The key to producing a wide variety of products with a stable set of processes is

to organize the firm as a loosely coupled dynamic structure. In this structure, stable

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

business processes are placed at the nodes and linked by centrally coordinated,

dynamically coupled arcs (Pine, 1993). By selecting world class business processes for

the structure’s nodes, the loosely coupled dynamic structure ensures high-levels of

quality and productivity in the final product's components. By flexibly linking these

processes in a dynamic manner, the loosely coupled dynamic structure provides unique

products in a very short cycle time. By properly coordinating the linkage between the

processes, the loosely coupled dynamic structure produces seamless products that

achieve the quality and cost required of mass customization (Pine, 1993).

To achieve mass customization, firms must first decouple their processes from

their products and turn their processes into stable modules. Armed with these stable

modules, firms must then create an architecture for quickly linking the modules

together in a coordinated manner to produce a product with the unique characteristics

required by a customer (Pine, Victor, and Boynton, 1993). Without an effective

architecture for configuring the links between the modules, achieving the flexibility

required for mass customization is impossible. Therefore, the key to achieving mass

customization is to define and build an appropriate architecture.

By taking the collaborative approach of the invention organization for the design

of products and basing their production on stable processes derived from the continuous

improvement organization, the mass customization approach is able to simultaneously

achieve variety and efficiency (Boynton, Victor, and Pine, 1993). When competitive

advantage is based upon quickly delivering a high quality, unique product or service at

a low cost, mass customization is the production strategy of choice. Based upon the

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

mass customization organization's ability to produce a wide variety of goods or

services using stable process, Boynton, Victor, and Pine (1993) selected the mass

customization organization as the exemplar for the dynamic product and stable process

change quadrant in their product-process change matrix.

Together, the continuous improvement quadrant and the mass customization

quadrant form the new mass customization and continuous improvement strategy

identified by Pine (1993). Because mass customization requires an adaptive base of

world-class processes capabilities, mass customization organizations must rely on the

continuous improvement quadrant for continuously refined and enhanced process

capabilities (Boynton, Victor, and Pine, 1993). The symbiotic relationship that exists

between the continuous improvement and the mass customization quadrants creates a

dynamic stability based upon the adoption of the dynamic processes of the continuous

improvement quadrant into the stable processes used in the production of mass

customized products. The synergy created between the two quadrants requires that the

old contradictions of the mass production and invention strategy must now be managed

simultaneously. Under the new competitive strategy, firms no longer have to choose

between either decentralization or centralization, cycle time or efficiency, and

flexibility or cost. Instead, firms must now develop a vision that includes elements of

both extremes simultaneously. To intelligently make these choices, firms will need the

help of a well defined enterprise-oriented system development architecture.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The Software Development Process

Organizational units developing information systems have long realized that the

need to quickly deliver new system solutions requires finding an alternative to the craft

based production of rigidly structured application solutions (Cusumano, 1989). Instead

of building each and every new system solution from scratch, information systems

professionals understand that they must find ways to capture and then leverage their

previous efforts when building new solutions. Encouraged by manufacturing's success

at developing standardized production processes, components, and tools that could be

reused across new products, information systems professionals are attempting to

emulate manufacturing's success by developing a software factory (Cusumano, 1991).

As Cusumano (1989) points out in his review of the historical development of

the software factory, no one definition of the software factory exists. With multiple

organizations developing software factories applied to a wide spectrum of different

software application types produced under different productive strategies, the resulting

assortment of software factories defies a single definition. However, the first public

proposals for a software factory, introduced in 1968 by General Electric (GE) and by

American Telephone and Telegraph (AT&T) (Cusumano, 1991), emphasized slightly

distinct approaches to the application of factory-like concepts to the production of

software that not only drives the development of software factories, but also remains

useful in classifying and understanding the current state of the software factory.

While GE’s approach focused on the standardization of tools and processes,

AT&T’s approach emphasized the production of a standardized set of parameterized

57

with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

software components that would serve as the reusable building blocks across different

applications (Cusumano, 1989). Although both of these approaches have enjoyed

limited successes, neither approach by itself nor both approaches taken together have

yet produced the interdomain operability required of today's software solutions. In

order to understand these limitations of the software factory as it is currently designed

and implemented, one must understand the present state of standardized software

processes, tools, and components.

Although the goal of systematic software reuse is to build software components

capable of being reused across multiple applications, current reuse technology produces

components that are so domain specific that their reuse across multiple application

domains is precluded. While component reuse rates of 60% have been achieved within

a project's domain, usage rates across projects have reached only 20-30% (SRI

International, 1993). In order to achieve interdomain reuse, new software components

that are predicated upon higher-level interdomain abstractions must be identified and

implemented (Barnes and Bolinger, 1991; Prieto-Diaz, 1993). In implementing these

new generic components, a mechanism that allows application developers to

extensibility instantiate these components to provide new unforeseen software

capabilities must also be developed. Until new higher level interdomain abstractions

are identified and implemented through a mechanism that provides extensible

instantiation, the goal of systematic reuse will not be achieved (Gamma, Helm,

Johnson, and Vlissides, 1995).

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

One example of the problem of extensible instantiation is AT&T’s initial attempt

at building reusable software from parameterized software components. The idea

behind parameterized software components is that component designers can determine

a priori what functionality to parameterize prior to system assembly. By allowing

system assemblers flexibility in selecting various levels of functionality, parameterized

software components provide systems assemblers with the ability to tailor (or

specialize) the systems functionality within the limitations of the overall design.

However, the problem with the parameterized software component’s predetermined

functionality is that it does not represent a mechanism for achieving the requisite

extensibility of the systems overall functionality (Pawson, Bravard, and Cameron,

1995).

Paralleling the effort to build reusable software components is the effort to

develop standardized software production processes and tools aimed at increasing the

productivity, reliability, and quality of the software solutions through process

standardization and control. By creating centralized management-control structures

operating standardized processes, software factories can reduce the variability in the

software development process. By eliminating variability, software factories can not

only maximize productivity (as measured by through put) but also establish a consistent

level of quality for each and every product produced in the factory. By providing

automated support tools for these standardized processes, the cycle time for delivery of

a specific product can also be reduced (Griss, 1993).

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

In seeking to emulate the success of manufacturing in providing automated

support tools for the production of products through CIM (Computer Integrated

Manufacturing), information technology organizations have responded by developing

CASE (Computer Aided Software Engineering) tools. By automating a standardized

process, CASE tools attempt to provide one standardized process for the production of

all software types (Cusumano, 1989). The problem with the CASE approach is that

there is no one standardized process capable of building all software types. Even under

mass production, no one standardized process exists that can produce all goods.

Instead, what results is a set of CASE tools, with each tool automating a specific

standardized process capable of producing a specific type of software product.

To integrate multiple specific standardized processes into one production

facility, the manufacturing community developed the concept of flexible manufacturing.

By reducing the set-up time for switching between multiple standardized production

processes, flexible manufacturing can produce a finite number of single-lot size

prespecified products in a very short cycle time in any sequence desired. Although

being able to quickly select and then execute specific mass production oriented

processes from a finite group of these processes represents increased flexibility in terms

of the production facility, flexible manufacturing does not provide the increased

product flexibility required for extensible solutions (Cusumano, 1989).

In an attempt to provide the required product flexibility, a software factory that

combines flexible manufacturing with standardized, interchangeable parameterized

parts has been developed (Swanson, McComb, Smith, and McCubbrey, 1991).

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Although reuse rates of over 90% are reported, along with an order of magnitude

improvement in software development productivity, a close examination of the

application domain addressed by this joint approach reveals a very narrow domain.

Because parameterized software components and flexible manufacturing are both

mechanisms that predefine the system’s overall functionality, the reuse leverage

obtained through this joint approach applies only to the predefined domain. The

following quote illustrates the point.

For business applications, several writers point out that reusability may
be most successful with transaction processing systems analogous to the
two ASF systems described in the article. Such systems share sufficient
commonalty to make reuse practical, for example, a deposit transaction
is similar in both a savings and money market application. (Swanson,
McComb, Smith, and McCubbrey, 1991, p. 568)

By defining a standardized deposit transaction template for transaction

processing systems, the manner in which a customer can interact with the software

system becomes constrained within some overall domain. Within that overall

constraint, specialization or extendibility of the system’s behavior can be achieved

without affecting the system’s overall operation. However, extensibility beyond the

pre-constrained overall domain cannot be achieved without redesigning the overall

relationship between components. To compete in a dynamic market, business process

reengineering has taught that underlying system assumptions (or constraints) must be

surfaced and broken in order to allow us to build effective complete system solutions in

a time frame necessary to enable the business change required for a competitive posture

(Hammer, 1990). Since parameterized software solutions constrain a software system’s

61

i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

behavior to a pre-defined domain, parameterized software solutions are not capable of

providing the requisite extensibility required in today’s turbulent business environment.

Synthesis, of Proposition

Although firms have tried to organize the software development process under

the invention, mass production, and continuous improvement strategies (Cusumano,

1989, 1991; Humphrey, 1989), the discussion of the four possible strategies for the

production of goods and services indicates that the invention and the mass

customization strategies are the only productive strategies capable of providing the

flexible software solutions required for a firm to compete in a turbulent market

environment. As the literature review reveals, the major difference between these

productive strategies’ emergent properties is based upon the overall structure (or

architecture) that they impose upon the relationship between components-a finding

completely consistent with general systems theory.

Therefore, to provide rapid provisioning of information systems solutions, the

overall structure (or architecture) of the provisioning process must adhere to the basic

architectural principles of the mass customization productive strategy. Stated as a

formal proposition, this requirement becomes Proposition 0 listed below.

Proposition 0: The ability to rapidly provision new information systems
solutions requires that the referent architectural form of a
general systems theory solution be based upon the mass
customization productive strategy.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Since mass customization is based upon an architecture designed as a centrally

coordinated, loosely coupled dynamic structure, selecting mass customization as the

referent architectural form implies that the functional requirements of this centrally

coordinated, loosely coupled dynamic structure must be specified. In software

architectures, the structure responsible for providing coordination between the system’s

components is known as the architecture’s command, control, and communication

mechanism (Shaw and Garland, 1996). Therefore, the selection of the mass

customization as the referent architectural form implies that the functional requirements

of the architecture’s command, control, and communication mechanism be specified.

Validation of Proposition

To validate Proposition 0, B. Joseph Pine II and Andrew C. Boynton (i.e., the

two individuals responsible for the identification of the mass customization paradigm

for the production of good and services) where contacted and consented to review the

base proposition. Based upon Pine’s work in identification of the mass customization

paradigm (Pine, 1993; Pine, Victor, and Boynton, 1993) and Boynton’s work in

identification of the dynamically stable organization (Boynton, and Victor, 1991;

Boynton, Victor, and Pine, 1993), Pine and Boynton both agreed that mass

customization is the only currently know productive paradigm for the rapid production

of goods or services.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER IV

THE SECOND ROUND

The implication of the base proposition developed in the first round suggests

that the development of a general system theory solutions requires that the functional

requirements of the architecture’s command, control, and communication mechanism

for the rapid provisioning of information systems must be specified. In order to

discover these functional requirements, the second round of this research effort focuses

on identifying and reviewing the prominent architectural efforts of information systems

organizations dealing with dynamic change. To discover which information systems

organizations were currently working on architecturally based solutions for rapidly

provisioning new information systems solutions, the review of the academic literature

conducted in the first round was consulted. Although the academic literature review

indicated that “Developing an Information Architecture” represented one of the most

important issues for organizations queried by the Society for Information Management

(Niederman, Brancheau, and Wetherbe, 1991), it failed to identify specific information

systems organizations that are currently investigating architectural based solutions.

Identification of Ditta-Collection Sites

To identify information systems organizations investigating architectural based

solutions, prominent industry based research and monitoring services where identified

and asked to participate in this research effort by supplying member company names

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

and contacts that where currently investigating architecturally based solutions to rapid

systems provisioning. After successfully recruiting the Gartner Group, the Patricia

Seybold Group, and CSC Index, a list of information systems organizations currently

involved in significant architecturally based efforts for rapid provisioning of

information systems was developed. The initial group of information systems

organization is shown below is Figure 4.1.

Andersen Consulting
American Management Systems
American Express
Apple
AT&T Global Information Solutions
Computer Science Corporation (CSC)
DEC
EDS
Exxon
Gemini Consulting
GTE
IBM
Microsoft
Mobil
Nations Bank
Open Engineering
Texaco
TI
USAA

Figure 4.1 Initial List of Organizations Involved in Architectural Efforts

Working from this initial list, each of the listed organizations was contacted and

asked to participate in this research effort. All of the organizations contacted consented

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

to some initial level of participation with the exception of IBM. As exposure to these

organizations resulted in an increased knowledge of their architectural efforts, the

scope of the initial list was modified to reduce overlap. Exxon’s, Texaco’s, and

Mobil’s IS architectural efforts were all found to center around the Petroleum Open

Systems Corporation’s (POSC) architecture resulting in the collapse of Exxon, Texaco,

and Mobil into a POSC based architecture group represented by Mobil’s POSC

architectural staff. In the case of Apple’s VITAL Technical Architecture, the overlap

between Apple’s VITAL and DEC’s DSTAR architecture was found to be significant,

resulting in the collapse of DSTAR into VITAL.

In some cases, the organizations’ willingness to participate was found to be

based upon their desire to develop a system integration process that would be built

upon a sound architectural approach rather than any actual architecturally based effort

within the organization. Although both GTE and AT&T were currently engaged in

system integration projects, neither organization possessed a formal architecturally

based effort. Because of the lack of any experience with architecturally based

integration efforts, these organizations were removed from the target data collection

group.

In other cases, the organizations declined to grant access to proprietary

information because of the presence of other organizations within the research study

that they felt where their competitors. In these cases, a single representative

organization was selected to represent the industry in question. For the financial

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

services industry, USAA became the selected representative while Anderson Consulting

was selected to represent the consulting industry.

After this consolidation process, the initial list of nineteen organizations was

reduced to the nine organizations that formed the data collection sites for the second

round of this research study. These nine organization are listed below in Table 4.1.

Table 4.1 Consolidated List of Organizations Participating
in Research Study

Organization Architecture

Apple Vital Technical Architecture
Andersen Consulting STAR Framework
CSC PRISM
EDS RightStep
Microsoft Microsoft Solution Frameworks (MSF)
Mobil Petroleum Open Systems Corporation (POSC)
Open Engineering Object Oriented Business Engineering (OOBE)
Texas Instruments (TI) Enterprise Integration Framework
USAA USAA Target Technical Architecture

From each of these organizations, access both to copies of their proprietary

architectures and their chief architect or architectural group was obtained. Because all

of these organizations classify their respective architectures as proprietary, these

organizations would not allow copies of their architectures to be directly included in

this research study as source documents. However, specific questions regarding the

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

purpose, design, and implementation of each organization’s architecture were addressed

based upon a review of the organizations’ architecture in personal interviews either

with each organization’s chief architect or with its architectural group. The

researcher’s notes from these interviews are included in the appendix of this study.

Analysis, of Interviews

In order to address changing information system requirements, each of the

organizations interviewed is attempting to define an information systems architecture

that will allow it to deal with change in some systematic manner. Even with a common

objective, the underlying architectural approaches taken by these organizations seem to

fall into two separate groups based upon their views of an information systems

architecture.

The first group, represented by the POSC, VITAL, and MSF architectures

(Interviews A.1.1, A.7.1, and A.8.1), views an information systems architecture from

a predominantly technology-oriented perspective. For this group, the driving

architectural issue is technology and the recent technological shift from a mainframe to

a distributed computing environment, such as client/server. Although this group

readily understands that an information systems architecture must deal with changing

business requirements, each sees client/server technology as the driving force for

enabling such change (Interview A.7.1). As client/server based architectures, these

architectures are built upon the idea of dividing the information system into three

dimensions: data, process, and presentation which is the three tier client-server

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

architecture. By separating these three dimensions, the architecture provides a

mechanism for isolating changes in one dimension so that it will not cause changes in

another dimension (Interviews A.7.1, A.8.1, and A.9.1).

Under these organization’s implementation of the client/server architectural

approach, changing business requirements are facilitated by providing an “empowered

end-user” with the capability to quickly change processing requirements within the

client (Interview A.7.1). Since each end-user can represent a unique client, the

flexibility of a the client/server architectural approach to simultaneously support a

heterogeneous set of clients represents the antithesis of the legacy mainframe

information systems approach. By moving the binding of data, process, and

presentation to the client from the mainframe, the client/server architecture can easily

support multiple bindings of these three dimensions instead of the single binding found

in legacy mainframe systems. As business requirements change over time, the

“empowered end-user” can change its processing needs accordingly.

To support the binding of data, process, and presentation within the client, the

architecture must provide the “empowered end-user” with a set of tools for quickly and

seamlessly integrating these three dimensions on the client (Interview A .7.1). Without

the development of the supporting technology, the “empowered end-users” will be

anything but empowered. Since the realization of the client/server approach depends

heavily on the development of even more enabling technology, Apple and Microsoft

view information systems architectures as having an extremely technologically driven

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

aspect to them and are relying on technology to provide solutions to the changing

information system requirements.

The second group, represented by EDS, Anderson, USAA, and Open

Engineering (Interviews A.2.1, A.3.1, A.5.1, and A.9.1), views an information

systems architecture from a predominantly business-oriented perspective. For this

group, the driving architectural issue is the rapid reengineering of business processes to

support changing business needs. Although this group clearly understands that an

information systems architecture must include technology in its implementation, recent

experiences with business process reengineering led each to see changing business

requirements as the driving force in developing an information systems architecture

(Interview A.5.1). As USAA’s architectural group stated, “The IT architecture must

support USAA's new business processes defined through our business process

reengineering efforts” (Interview A.5.1).

Although the distinction between a business-oriented view and a technology-

oriented view of an information systems architecture might not seem obvious or of any

significance, the basis for one’s view of the information systems architecture does have

important consequences for how the resulting architecture deals with change. In the

case of the technology-oriented view, architectural efforts are focused on defining

“how” the technology can be used to enable changing information systems

requirements. By starting with the technological representation of the architecture and

moving toward the business representation, the technology-oriented view takes a

“how” first approach to the design of the architecture. As VITAL’s head architect so

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

succinctly observed, “(S)ince the business architecture must be able to be adapted to

new environments, a complete definition of its functionality cannot be defined a priori.

Given the lack of a complete ‘Business Architecture,’ the question becomes how can

the technical architecture be designed?” (Interview A.7.1).

In contrast to the “how” first technology-oriented view, the business-oriented

view of architecture starts by defining “what” the information systems architecture

must accomplish from a business perspective independent of any specific technological

implementation. By moving from the business representation toward the technological

representation, the business-oriented view takes a “what” first approach to the design

of architecture. The following quote by Anderson Consulting ELA’s chief architect

captures the business-oriented view.

The architecture should specify what we should build, not how—
which means that an architecture is not restricted to one
implementation method or technology. Quite the contrary, an
architecture should help identify and guide the selection of an
appropriate methodology and technology that are necessary to
deliver business results over different generations of technologies
and methodologies. (Interview A.3.1, HR, p. 130)

The significant difference between the “what” first business-oriented view and

the “how” first technology-oriented view is found in “how” information system

architectures built using these perspectives deal with changing information systems

requirements. Under the “how” first technology-oriented view, architectural issues

that have not been resolved (i.e., the required business functionality) must be deferred.

In the case of the VITAL architecture, it attempts to deal with changing business

requirements by focusing on providing the invariant portion of the system, in this case

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

the data, and deferring responsibility for integrating the invariant and variant, in this

case the process, portions of the system to the end-user (Interview A.7.1).

By contrast, the “what” first business-oriented view “starts with a business

driven approach that requires that the business’ goals, policies, culture, and

environment be identified, integrated, and then linked to the architecture’s technology

goals” (Interview A.3.1). Under the “what” first approach, the information systems

architecture must focus on defining the variant portion of the system from the very

beginning. The idea underlying the “what” first business-oriented view is perhaps best

captured by the observation made by TI’s chief 0 0 architect that “(w)ithout a map of

where you are going, its hard to get there” (Interview A.4.1, JM, p. 135).

Although an information systems architecture must possess both a business and

technology perspective and deal with changes in both technology and business

requirements, the idea that “without a map of where you are going, its hard to get

there” (Interview A.4.1) implies that an information systems architecture must be

business driven while also being responsive to changes in technology. The

requirements that the information systems architecture be capable of dealing with both

changing business requirements and changing technology under an approach that

enables the requisite business solution led to the statement of Notion 1 and Notion 2

listed below.

Notion 1: The ability of an information systems architecture to
remain evergreen requires that the information systems
architecture’s command, control, and communication
mechanism have the capability to deal with both
changing business requirements and changing
technology.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Notion 2: The ability of an information systems architecture to
enable the requisite business solution requires that the
information systems architecture’s command, control,
and communication mechanism be business driven and
technologically responsive.

Given these two notions, the obvious questions that come to mind are (1) “What

are the requirements for dealing with change?” and (2) “What are the requirements for

being business driven?” In order to explore the answers to these questions, one must

first realize that implicit in both of these notions is the idea that business and

technology exist as separate domains (Interviews A.2.1, A.3.1, and A.6.1). When

viewed as separate domains, the first notion suggests that an information systems

architecture represents a mapping between the two domains and the second notion

suggests that the mapping should be a directed mapping from the business domain onto

the technology domain (Interviews A.3.1 and A.6.1).

Anderson Consulting EIA’s chief architect alludes to the idea of an information

systems architecture as a mapping by stating that the key to developing one is to define

“the linkages between architectural layers which cause technical decisions to be based

upon identified business dependencies and relationships” (Interview A.3.1, HR, p.

130). The insight that an information systems architecture represents a mapping across

domains allows one to view the architecture’s ability to deal with change within a

domain as a requirement for a new mapping across the domains. Likewise, the

architecture’s requirement for being business driven can be viewed as a requirement for

first determining the business domain’s requirements that are independent of the

technology domain’s implementation of these requirements. Formally stated, the

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

i
fs

requirement for an independent statement of the business domain’s requirements

become Notion 3.

Notion 3: The ability of an information systems architecture to
enable the requisite business solution requires the
information systems architecture’s command, control,
and communication mechanism to first determine the
business domain’s requirements independent of the
technology domain’s implementation of these
requirements.

As a mapping between domains, the overall effectiveness of the architecture will

be based upon the quality of the mapping. In CSC’s experience, the current quality of

information systems architectures is a direct result of poor quality mappings. As CSC

PRISM’s chief architect stated, “We believe that the underlying problem of architecture

is that there is no context for making decisions about technology and its use from a

business perspective” (Interview A.6.1, JS, p. 146). To address the problem, CSC’s

PRISM architecture focuses exclusively on developing a set of “evaluative criteria ...

for making architectural decisions” because “(w)ithout a clear set of driving principles,

an architecture lacks a clear context for making decisions about technology and its use

from a business perspective” (Interview A.6.1, JS, p. 146).

The source of these principles is often described as the organization’s values,

shared values, or culture (Interviews A.3.1, A.5.1, and A.6.1). CSC PRISM’s chief

architect stated that “The key to successful elucidation of principles is the discovery of

these values, as opposed to their invention” (Interview A.6.1). For USAA’s

architectural team, capturing and enforcing the shared values that represent USAA’s

culture is presented as their biggest architectural challenge. The following passage

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

from the USAA interview helps to explain why an organization’s shared values are of

such significance in determining the principles of an information systems architecture.

The biggest problem that this architecture faces is its inability to
address the issue of culture. Culture is the glue that binds all of USAA
together. It represents our shared values, and USAA has a very well
defined set of shared values. These shared values define the way
USAA views the world, how we work together, how we solve
problems, how we deal with conflict and a whole host of other similar
issues—how USAA would work with a customer to build an insurance
contract. All IT systems exist within some organization. If the culture
of the organization is not compatible with the system design, the
organization will reject the system. The system must operate and
enforce the shared values of the organization. The architectural
problem is not only capturing and enforcing shared values but dealing
with the fact that these shared values are changing—in large part
enabled by new information technology. So the architecture must not
only enforce the shared values but also enable the organization to
change them when necessary. (Interview A.5.1, CE, p. 143)

Until an organization can enunciate its values, it lacks a context for making any

decisions. Because technology should be selected, given its enabling capabilities, its

risk, its reliability, its cost, and number of other factors identified by Anderson

Consulting, EDS, and CSC, an organization needs to first develop a set of architectural

principles in order to build a context within which it can evaluate possible technological

choices. As new information technologies are developed, their enabling capabilities,

their risks, their reliability, their costs, and all their other factors can be evaluated

within that context.

As USAA’s architecture team also points out, the shared values of organizations

are changing, “in large part enabled by new information technology. So the

architecture must not only enforce the shared values but also enable the organization to

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

change them when necessary” (Interview A.5.1, CE, p. 143). Because changes in

shared values must first be captured and then be enforced through the selected mapping

between the business and technology domains, capturing and enforcing shared values

represent a requirement for being business driven. The formal statement of the

requirements for capturing and enforcing the shared values of the organization become

Notion 4 and Notion 5 listed below.

Notion 4: The ability of an information systems architecture to
enable the requisite business solution requires the
information systems architecture’s command, control,
and communication mechanism to capture the business
organization’s shared values independent of their use in
the mapping of business domain’s requirement onto the
technology domain’s implementation.

Notion 5: The ability of the information systems architecture to
enable the requisite business solution requires that the
information systems architecture’s command, control,
and communication mechanism enforce the business
organization’s shared values when mapping the
business domain’s requirements onto the technology
domain’s implementation.

As USAA’s architectural group stated, the reason for enunciating the

organization’s shared values is that “These shared values define the way USAA views

the world, how we work together, how we solve problems, how we deal with conflict,

and a whole host of other similar issues-how USAA would work with a customer to

build an insurance contract” (Interview A.5.1, CE, p. 143). Without an enunciated set

of shared values, the organization will not possess a necessary condition for the

integration of “all of these issues in some consistent manner” (Interview A.2.1, JN, p.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

128). The benefit of having a consistent integration is that it enables the organization

to simultaneously address multiple criteria.

For organizations holding a predominately technology-oriented view, the fact

that a complete information systems architecture requires the integration of all of these

issues in some consistent manner is not at issue (Interviews A.7.1 and A.8.1). In fact,

organizations in both the business-oriented and the technology-oriented groups believe

that a information systems architecture must integrate both data and process in some

consistent manner in order to provide a complete information systems solution

(Interviews A.2.1, A.3.1, A.5.1, A.7.1, A.8.1, and A.9.1). The major distinction

between the two groups is a matter of when and how the integration should take place

in order to provide the consistency, speed of integration, and flexibility required for the

rapid provisioning of new information systems solutions (Interviews A.2.1 and A.7.1).

Even those organizations holding a very data centric approach to an information

systems architecture realize that an architecture must capture meta-data about the data

in order to ensure integrity when using the data (Interviews A. 1.1 and A.7.1). Because

data and process must both be integrated to provide a complete information systems

solution, integration of both data and process in some consistent manner becomes a

necessary condition for providing the requisite business solution. The formal statement

of the requirements for integration of both data and process becomes Notion 6 listed

below.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Notion 6: The ability of an information systems architecture to
enable the requisite business solution requires that the
information systems architecture’s command, control,
and communication mechanism integrate both data and
process (or rules) in some consistent manner.

Although a consistent integration itself is necessary for the integrity of the

solution, when and how the integration is accomplished determines if the solution also

simultaneously provides the integrity, speed of integration, and flexibility required for

the rapid provisioning of new information systems solutions. In EDS’s experience,

when using a top-down approach, integration achieved by defining a single, unified set

of requirements results in a consistent integration that is too rigid and cumbersome to

provide the requisite flexibility or speed for the rapid provisioning of new information

systems solutions. EDS’s Enterprise Modeling Project indicates that integration

achieved by defining a single, unified set of requirements using a top-down approach

can provide a consistent integration when the size of the requirements allows

everything to be defined, when the static nature of the requirements allows the

integration to be defined once and left unchanged, and when the homogeneous nature of

the requirements allows one integration to work in all instances (Interview A.2.1).

Although some would consider a bottom-up approach as the antithesis to a top-

down approach, EDS’s Meta-modeling Project indicates that integration achieved by

combining multiple, heterogeneous sets of requirements using a bottom-up approach

results in an integration process that suffers from a similar set of limitations as a top-

down approach. As the set of requirements becomes more heterogeneous, the ability to

achieve consistency in a bottom-up integration becomes increasingly difficult (Interview

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2, 4). As the number of requirements (represented by N) increases, the number of

linkages between requirements increases a s (N * (N - l)) / 2 under a bottom-up

approach resulting in size limitations (Interviews A.2.1 and A.4.1). If the

requirements are not static, then the dynamic nature of the requirements can cause all

of the corresponding problems found under a top-down approach (Interview A.2.1). In

fact, nothing inherent in a bottom-up approach provides any mechanism for the

resolution of the complexity created by the size, the dynamic nature, or the

heterogeneous nature of the requirements (Interviews A.2.1 and A.4.1).

To deal with the complexity created by the size of the requirements, TI,

Anderson Consulting, and Open Engineering are using abstraction to build a layered

model of an information systems solution (Interviews A.3.1, A.4.1, and A.9.1).

Through the use of abstraction, details of the information systems solution that are

immaterial can be suppressed leaving the details or properties of the solution that are

significant. By reducing the number of details or properties, abstraction reduces the

complexity created by size. The critical issue in the use of abstraction is the

determination of what details or properties are material to the question under

consideration. The determination of the number of layers of abstraction should be

based upon the specific features of the domain of interest.

To contend with the complexity created by the dynamic nature of the

requirements, Open Engineering is deferring the binding time of the integrated

requirements to the implementation (Interview A.9.1). By deferring the binding time

of the integrated requirements to the point in time at which the implementation

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

executes, run-time binding provides a more dynamic mechanism for dealing with

changing requirements than binding the requirements at the point time at which the

code is written. If the integrated set of requirements to be bound to the implementation

remains homogeneous across all instances within the implementation, then late binding

probably represents a necessary and sufficient condition for dealing with the dynamic

nature of the requirements. For cases where the integrated set of requirements must be

reconfigured for some instances based upon local requirements, late binding of a single

predefined integration will not provide the required solution. In order to determine the

appropriate point in time at which the requirements should be bound to the

implementation, the specific dynamic nature of the requirements under consideration

must be considered.

To cope with the complexity created by the need to have heterogeneous

resolution of the requirements across different instances within the implementation,

Apple and Open Engineering are using local resolution of the requirements across

instances (Interviews A.7.1, and A.9.1). By deferring the integration of the

requirements to each local instance, a unique local resolution for each instance can be

achieved. Although the increased flexibility that local resolution of the requirements

provides is desirable, TTs and USAA’s experience suggests that deferring the

resolution to the local nodes creates some issues of how to ensure the consistency of

resolutions across all instances within the implementation (Interviews A.4.1, A.5.1).

TTs attempts to provide “empowered end-user” with localized resolution of

financial analyze requirements resulted in the incongruous resolution of these

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

requirements across departments due to the inconsistent application of corporate wide

financial planning requirements and the inaccurate use of both financial analysis models

and corporate wide data (Interview A.4.1). In USAA’s case, achieving a consistent

resolution represented only part of the requirements. In addition to a consistent

resolution, USAA’s management also wanted the information systems architecture’s

command, control, and communication mechanism to inform it when a localized set of

requirements were combined to cause a global requirement to be altered or overridden

(Interview A.5.1). In general, the determination of the appropriate local requirements

and the appropriate resolution mechanism should be based upon the specific nature of

the instance and organizational goals.

Unless end-users become all knowing, building the requisite business solution

by empowering end-users requires that the command, control, and communication

mechanism of an information systems architecture provide them with the ability to

resolve the complexity of the requirements created by their size, dynamic nature, and

heterogeneous nature in some consistent manner. The formal statement of these

requirements for the consistent resolution of requirements becomes Notion 7, Notion 8,

and Notion 9 listed below.

Notion 7: The ability of an information systems architecture to
enable the requisite business solution requires that the
information systems architecture’s command, control,
and communication mechanism use abstraction to deal
with the complexity of the information system’s
requirements created as the number of requirements
increases.

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Notion 8: The ability of an information systems architecture to
enable the requisite business solution requires that the
information systems architecture’s command, control,
and communication mechanism utilize an appropriate
binding point based upon the dynamic nature of the
information system’s requirements.

Notion 9: The ability of an information systems architecture to
enable the requisite business solution requires that the
information systems architecture’s command, control,
and communication mechanism integrate both local and
global information system’s requirements in order to
deal with the heterogeneous nature of local instances.

Through the analysis of the interviews conducted for the second round of this

research study, nine notions of the requirements of an information systems

architecture’s command, control, and communication mechanism for the rapid

provisioning of information systems solutions have been identified. With the

identification of each new notion, an individual piece of the overall picture of what an

information systems architecture’s command, control, and communication mechanism

capable of rapidly provisioning new information systems solutions is discovered.

Although each individual notion is important in its own right, a complete description of

the command, control, and communication mechanism requires the integration of these

individual notions into a consistent whole. In the next section, the preliminary notions

of the requirements of an information systems architecture’s command, control, and

communication mechanism capable of rapidly provisioning new information systems

solutions will be synthesized into a set of propositions using constant comparison.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Synthesis of Propositions

The synthesis of the preliminary notions generated from the interviews into

propositions requires its comparison with insights from existing formal theories (Glaser

and Strauss, 1967). In order to compare these notions with the existing literature, one

must first identify the theoretical constructs or ideas that these notions address and then

cast these notions in terms of these constructs before comparing and synthesizing them

into propositions. Of the nine notions generated in the second round of this study,

Notions 1,2, and 3 predominately deal with the idea of a strategic fit between the

business domain and the information technology domain within an organization

indicating that these notions should be compared with the appropriate strategic

alignment literature. Notions 4 and 5 address the issue that culture or shared values

play in the development of information systems indicating that these notions should be

compared with the appropriate organizational cultural literature. Notion 6 addresses

the definition of the components of an information system and a requirement for their

integration, indicating that this notion should be compared with the appropriate

systems’ development literature. Notions 7, 8, and 9 further deal with the

requirements of the integration process itself indicating that these notions should be

compared with the appropriate systems’ architecture literature.

Cast in terms of the idea of a strategic fit between the business domain and the

information technology domain within an organization, Notion 1 suggests that the

strategic fit between the business and information technology domains is inherently

dynamic. Given a dynamic nature, achieving a strategic fit requires that an

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

organization engage in a continuous process of strategic alignment. Viewed in terms of

a process, Notion 2 suggests that the first step in the strategic alignment process is the

determination of the business requirements followed at some later point by another step

that maps these requirements onto the technology domain. As a process, Notion 3

suggests that the first step in the strategic alignment process, the determination of

business requirements, can and should be executed independently from any subsequent

steps.

Notion 4 suggests that the determination of business requirements must include

the capture of the shared values or social context of the organization. Notion 5

suggests that these shared values must be used in the alignment process at the point

when the business requirements are mapped onto the technology domain to ensure an

appropriate alignment. Notion 6 suggests that a complete mapping between the

business and technology domains must include both data and process and that a

mapping must be conceptually or logically consistent. Notion 7 suggests that the

determination of the business requirements should use abstraction to deal with the

complexity created when the number of issues becomes large. Notion 8 suggests that

late binding of the resolved business requirements to the executable implementation

should be used to address the dynamic nature of the alignment process. Last, Notion 9

suggests that local resolution of the business requirements should be used to contend

with the heterogeneous nature of system requirement within organizations.

The need for the strategic alignment of the business strategy and the information

technology strategy is based upon the research of King (1978), Rockart (1979), and

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Pybum (1983) who concluded that a failure to establish a strategic linkage between the

business strategy and the information technology strategy results in dysfunctional

systems. Building upon a diverse body of earlier work, Venkatraman and Camillus

(1984) first introduced the idea of a strategic fit as the consistent alignment or linkage

of strategic choices in the external and internal domains of the organization. In its

original formulation, a static linkage between the business strategy and information

systems function was developed based upon the use of information technology to

provide the most efficient and effective implementations of the required business

functions that were themselves based upon the chosen business strategy (Henderson and

Venkatraman, 1993). The performance criteria for assessing the fit of this linkage is

based upon the cost reduction capabilities of the information system.

As long as organizations seek a competitive advantage based solely upon price,

the static alignment of information technology with the business strategy through

business functions represents a viable strategy (Luftman, Lewis, and Oldach, 1993).

When organizations seek to differentiate themselves using distinctive competence, the

use of a static linkage proves inadequate to support a sustained competitive advantage

(Henderson and Venkatraman, 1993). The two major reasons for the failure of the

traditional static linkage model are its inability (1) to recognize that alignment between

business strategy and information technology strategy includes both the alignment of

the formulation and the implementation of the strategy and (2) to recognize the

inherently dynamic nature of the strategic alignment process (Henderson and

Venkatraman, 1993).

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

In order to achieve strategic alignment, Henderson and Venkatraman’s (1993)

two by two Strategic Alignment Model shows that organizations can select from four

strategic alignment perspectives. In all four cases, the perspectives are strategically

driven and functionally responsive. Furthermore, Henderson and Venkatraman (1993)

point out that the selected perspective must constantly be reevaluated in light of the

dynamic nature of strategic alignment. Comparing the results of the strategic alignment

literature with Notion 1, Notion 2, and Notion 3 results in the synthesis of the

propositions listed below.

Proposition 1: The ability of an information systems architecture to
remain evergreen requires that the information systems
architecture’s command, control, and communication
mechanism have the capability to deal with both
changing strategic requirements and changing
functional capabilities.

Proposition 2:

Proposition 3:

The ability of an information systems architecture to
enable the requisite business solution requires that the
information systems architecture’s command, control,
and communication mechanism be strategically driven
and functionally responsive.

The ability of an information systems architecture to
enable the requisite business solution requires the
information systems architecture’s command, control,
and communication mechanism to first determine the
strategic domain’s requirements independent of the
functional domain’s implementation of these
requirements.

The idea that culture plays an important part in the success of the introduction

of information technology is not new to the information systems field (Ginzberg,

1981). For example, the interactionist approach (Markus, 1983) and the reinforcement

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

politics approach (George and King, 1991) have examined the role of the social context

in shaping the introduction and use of information technology, while the structuration

perspective (Orlikowski and Robey, 1991) has emphasized the centrality of players’

deliberate, knowledgeable, and reflective action in shaping and appropriating

information technology. In other investigations, the use of technology as an agent of

cultural change has been studied (Markus and Robey, 1988; Orlikowski, 1993).

Although these approaches differ on the process through which social context

and technology interact over time to affect the outcome of the introduction of

information technology, all of these approaches emphasize the critical nature of the

alignment of the organization’s shared social and technological values when introducing

new information technology into organizations. Keen (1993), in his Fusion Map

approach, states that,

When every leading firm in an industry has access to the same
information technology resource, the management difference determines
competitive advantage or disadvantage. The management challenge is to
make sure that business process, people, and technology are meshed,
instead of being dealt with as separate elements in planning and
implementation, (p. 17)

In order to integrate business process, people, and technology into a consistent

whole, the organization must first identify the value it places on these elements.

Comparing the results of the organization’s cultural literature with Notion 4 and Notion

5 results in the synthesis of the propositions listed below.

Proposition 4: The ability of an information systems architecture to
enable the requisite business solution requires the
information systems architecture’s command, control,
and communication mechanism to capture both the
organization’s shared social and technological values.

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

f

Proposition 5: The ability of the information systems architecture to
enable the requisite business solution requires that the
information systems architecture’s command, control,
and communication mechanism enable the alignment of
the organization’s shared social and technological
values.

The decomposition of an information system into data and process dates back to

the earliest work on structured programming and design (Yourdon, 1975). Although

the general wisdom in the information systems’ field holds that data, process, and

timing are all necessary for the complete specification of an information system, some

researchers studying the impact of information technology on organizations have

assumed that the integration of data alone will provide the necessary communication

mechanism for the coordination within and across diverse organizations (Huber, 1990;

Malone, 1987). However, subsequent research by Goodhue, Wybo, and Kirsch (1992)

into the benefits of data integration have shown that data integration alone has not

produced the anticipated benefits due to the inability of data integration methodologies

to simultaneously represent unique subunit information requirements or perspectives.

This conclusion is in complete agreement with Venkatraman’s (1986) research that

established the need to view organization performance from multiple perspectives.

In order to simultaneously represent multiple perspectives, the multiple

perspectives must be logically or conceptually consistent. Because information systems

include data, process, and timing as components, the integration of these components

into a system must be accomplished in a consistent manner. Comparing the results of

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

the systems development literature with Notion 6 results in the synthesis of the

proposition listed below.

Proposition 6: The ability of an information systems architecture to
enable the requisite business solution requires that the
information systems architecture’s command, control,
and communication mechanism enable the integration of
data, process (or rules), and timing in a consistent
manner.

The use of abstraction to deal with the complexity created by size represents a

well known and very powerful technique for dealing with the human limitations for

processing information (Miller, 1956). Unable to master the entirety of a complex

domain, humans choose to ignore inessential details, dealing instead with a generalized,

idealized model of the domain through abstraction. In defining an abstraction, Shaw

(1984) states that as “a simplified description, or specification, of a system that

emphasizes some of the system’s details or properties while suppressing others” (p. 8).

She continues, “A good abstraction is one that emphasizes details that are significant to

the reader or user and suppresses details that are, at least for the moment, immaterial

or diversionary” (p. 8). Because abstractions focus on defining common or shared

properties, they arise from a recognition of similarities between certain objects,

situations, or processes in the real world (Dahl, Dijkstra, and Horace, 1972).

By identifying the essential similarity or pattern, abstraction allows us to capture

reusable pieces of information that contain increasingly greater semantic content within

the abstraction’s selected perspective. The critical issue in the use of abstraction is the

determination of what details or properties are material given the abstraction’s

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

perspective. Comparing the results of the systems architecture literature with Notion 7

results in the synthesis of the proposition listed below.

Proposition 7: The ability of an information systems architecture to
enable the requisite business solution requires that the
information systems architecture’s command, control,
and communication mechanism use abstraction to deal
with the complexity of the information system’s
requirements created as the number of requirements
increases.

As part of the process of specifying the information systems’ requirements,

symbols will need to be defined that represent concepts in the domain of interest. At

some point in the implementation process, these symbols will need to be bound to real

world instances of the concepts that they represent (Manna and Waldinger, 1985). The

choices for a binding time range from the point when the specification is written to the

point at which the implemented specification is executed (Tannenbaum, 1990). The

later the point that the instances are bound, the more dynamic the solution (Jacobson,

1992). Comparing the results of the systems architecture literature with Notion 8

results in the synthesis of the proposition listed below.

Proposition 8: The ability of an information systems architecture to
enable the requisite business solution requires that the
information systems architecture’s command, control,
and communication mechanism use an appropriate
binding point based upon the dynamic nature of the
information systems requirements.

Because the overall design of the relationships between the components within a

system determine the emergent properties of the system (Klir, 1985), the study of

different design forms has received significant attention in economics (Piore and Sabel,

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

1984), organization theory (Duncan, 1979; Galbraith, 1973) , computer science (Shaw

and Garland, 1996), and information systems (George and King, 1991). Historically,

design choices have been viewed in terms of a centralized versus decentralized design,

depending upon where the resolution of the issue under consideration takes place. In

information systems, the decentralized design’s advantage is found in its ability to

provide superior flexibility and responsiveness relative to a centralized design’s ability

to provide efficiency and interoperability in the information systems’ solution (George

and King, 1991).

Unless a single organization-wide integration can be found that works equally

well in all instances, inclusion of instance specific requirements into the requirements’

integration process will be necessary (Allen and Boynton, 1991). In order to provide

the flexibility required of today’s information system solutions, the command, control,

and communication mechanism of the information systems architecture must include

both local and global information systems’ requirements in the requirements’

integration process. Comparing the results of the systems architecture literature with

Notion 9 results in the synthesis of the proposition listed below.

Proposition 9: The ability of an information systems architecture to
enable the requisite business solution requires that the
information systems architecture’s command, control,
and communication mechanism integrate both local and
global information systems’ requirements in order to
deal with the heterogeneous nature of local instances.

In order to understand the overall relationship between the propositions

developed in this round, a graphical representation of these propositions and the

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

I

implications that link them is presented in Figure 4.1. In Figure 4.1, the functional

requirement that the referent architecture remain evergreen requires that the command,

control, and communication mechanism of the referent architecture deal with both

changing strategic requirements and changing functional requirements. To deal with

these changing requirements implies that the command, control, and communication

mechanism of the referent architecture must poses the ability to identify and capture

these changing requirements as formally defined in Propositions 2, 3, 4 and 7. Once

captured, adapting to these changing requirements implies that the command, control,

and communication mechanism of the referent architecture must achieve an alignment

between these requirements as formally started in Proposition 5. Achieving an

alignment implies that the command, control, and communication mechanism of the

referent architecture must have the ability to bind (i.e., Proposition 8) the data,

process, and timing (i.e., Proposition 6) of components that exist in different contexts

or environments (i.e., Proposition 9).

In synthesizing these propositions through constant comparison with the

appropriate literature, the fact that support for all of these propositions can be found in

the literature suggests that these propositions represent significant elements of the

evolving referent architecture. Although all of these elements are significant, the

adequacy of the specification of the command, control, and communication mechanism

of a referent architecture depends on not only the completeness but also the correctness

of the propositions. Under the ground theory research methodology, the validation or

the correctness and theoretical saturation or the completeness of the referent

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

architecture is established by the constant comparison of the evolving architecture (as

represented by the propositions) with the data and literature by triangulation.

Evergreen

Alignment

P7

P6 P9

P4

P8

Figure 4.2 Overall Relationship Between Propositions
Developed in Round 2

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Validation of Propositions

The validation of the base proposition requires that subsequent propositions, as

a group, correctly and completely specify the referent architectural form of the

command, control, and communication mechanism. For a referent architecture, the

test of the specification’s completeness is based upon an implementors ability to build a

working instantiation of the referent architecture. Therefore, the validation of the

specification must be judged in terms of both its breath and its depth.

To validate the correctness and the completeness of the nine propositions

developed in the second round, these nine propositions were shown to representatives

of the participating organizations. As a group, these nine propositions where found to

be both correct and complete, given their level of specification. However, based upon

the comments of reviewers at EDS, TI, and Open Engineering, the level of detail of

these propositions was found to be insufficient as a specification of a referent

architecture. Specifically, these organizations felt that Proposition 5 needed further

investigation in light of the development of the Object Management Group’s (OMG’s)

Common Object Request Broker Architecture (COBRA).

Given these organizations’ lack of comments relative to Propositions 1, 2, 3, 4

and 7, one might conclude that these propositions are complete in both terms of their

breath and depth. In fact, no conclusion can be drawn at all given the focus of these

organizations view that an information systems architecture exists within the functional

information technology domain-a view supported by Henderson and Venkatraman’s

Strategic Alignment Model (1993) that places the information systems architecture

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

[

within the internal domain of the organization. In short, these organizations felt that

Propositions 1, 2, 3, and 4 were outside the perview required for specifying the

referent architectural form of the command, control, and communication mechanism

for the rapid provisioning of information systems. Although their conclusion is not, in

general, true, their conclusion is correct, since this research study’s purpose is to

specify a referent architectural form of the command, control, and communication

mechanism given that mass customization is selected as the external information

technology strategy for the rapid provisioning of information systems.

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER V

THE THIRD ROUND

In order to more fully explore the functional requirements that the command,

control, and communication mechanism of the referent architecture must poses to

achieve an alignment between the strategic requirements and functional requirements of

the enterprise, the third round of this research study focuses on reviewing the

architectural principles of the Object Management Group’s (OMG) Object Management

Architecture (OMA). The OMG, founded in 1989, represents more than 400

companies dedicated to defining a reference architecture for developing and using

integrated software systems. Their approach is to adopt specifications based upon

available technology and agreed on by member companies. The OMG has defined

common terms, interfaces, and a framework for distributed computing in the OMA. In

the OMA framework, objects interact through an object request broker that specifies

how objects make requests and get responses. To ensure integration, the OMA

specifies the basic mechanism that OMA compliant applications must support to use the

object request broker (OMG, 1991).

Identification of Data Collection Sites

The OMG is organized into task forces that are chartered by the OMG’s

Technical Committee for the purpose of solving specific problems in the specification

of the OMA. The OMG currently charters nine task forces, three of which are

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

classified as platform task forces and six of which are classified as domain task forces.

The platform task forces are the Common Facilities Task Force, Object Analysis and

Design Task Force, and the Object Request Broker/Object Services Task Force. The

domain task forces include the Business Object Task Force, Electronic Commerce

Domain Task Force, Financial Domain Task Force, Manufacturing Domain Task

Force, Healthcare Domain Task Force, and Telecommunications Task Force. Of these

nine task forces, the Business Object Task Force represents the one chartered with

defining the requirements for the integration of independently developed objects into

business applications.

As a standards setting body, the OMG has agreed to reuse, through adoption, all

International Standards Organization (ISO) and American National Standards Institute

(ANSI) standards where appropriate. One such standard that the OMG has agreed to

adopt is the ISO’s Open Distributed Computing - Reference Model (RM-ODP)

(ISO/IEC, 1995). RM-ODP defines five viewpoints that must be specified in order to

develop an open distributed information system. These viewpoints are the information,

computational, engineering, technology, and enterprise (ISO/IEC, 1995). Under an

agreement with ANSI, the enumeration of an enterprise language for specifying the

enterprise viewpoint in RM-ODP was delegated to the ANSI’s X3H7 Technical

Committee. In order to more fully explore the requirements for Propositions 6, 7, 8,

and 9, the third round of this research study focuses on collecting the insights of the

members of the ANSI’s X3H7 Technical Committee and the OMG’s Business Object

Task Force.

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Analysis of Interviews

To deal with the complexity created by size, the RM-ODP and the OMA use

abstraction (Interviews A. 10.1 and A. 11.1; ISO/EEC, 1995). As a layered model, the

OMA uses abstraction based upon the level of detail to define the layers within the

architecture (Interviews A. 10.1 and A. 11.1). Within a layer, the OMA uses

abstraction based upon perspectives to define multiple views of that layer (Interviews

A. 10.1 and A. 11.1). By combining abstraction with encapsulation, the OMG believes

that the OMA provides a mechanism for flexible instantiation that overcomes the

problems of either a pure bottom-up or a pure top-down approach (Interview A. 10.1).

To ensure the independence of layers through encapsulation, m echanisms for

mapping across layers must be found that are not built upon the inner working of other

layers (Interviews A. 10.1 and A. 11.1). To link across layers using inheritance from or

subclassing of classes contained within a higher layer will bind the lower layer to the

higher layer’s internal structure, resulting in a loss of independence between layers

(Interview A. 10.1). Instead, mappings that create a clear distinction between “what” a

layer must provide and “how” the layer meets its obligations must be found (Interviews

A. 10.1 and A.11.1).

Within layers, a consistent resolution of the multiple viewpoints of “what” the

layer must provide must also be found (Interview A.11.1). Because each viewpoint in

the requirements specification is based upon an abstraction developed independently of

“how” these viewpoints will be realized, the development of the requirements

specification cannot account for the interrelationships between viewpoints until a design

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

is formulated (Interview A.11.1). Given a design, the interrelationship between

viewpoints will either be consistent, inconsistent, or contradictory. To resolve

inconsistencies, a partial ordering of the individual viewpoints relative to the issue must

be established or a new design specifying “how” the layer’s functionality is to be

provided must be devised (Interview A.11.1). To resolve contradictions, a new design

specifying “how” the layers functionality is to be provided must be devised (Interview

A.11.1).

In specifying a mapping across layers, the specification must enumerate the

relationships between aspects of the concepts that exist within each layer (Interview

A.11.1). Because all of the aspects of a concept in one layer will rarely, if ever, map

onto all of the aspects of a concept in another layer in a one-to-one correspondence,

mappings, in general, will produce many-to-many relationships (Interview A.11.1). In

addition, the mappings across layers will be constrained both by the design of the

layers and the inherent limitations of the underlying concepts themselves (Interview

A.11.1). When incomplete or partial mappings are present, inconsistencies or

contradictions may result. To resolve these problems, a new specification of “how”

the concept will be implemented must be devised (Interviews A.11.1 and A. 12.1).

In order for the information systems architecture to use abstraction, the

architecture's command, control, and communication mechanism must enable both the

consistent resolution of multiple viewpoints within a layer and of concepts mapped

across layers. To enable the organization to develop consistent resolutions, the

command, control, and communication mechanism of the information systems

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

architecture must verify, at a minimum, that the implemented resolutions are

consistent. Formally stated, the requirements for a consistent mapping both w ithin and

across layers become Notion 10 and Notion 11 listed below.

Notion 10: The ability of an information systems architecture to enable the
use of abstraction requires the information systems
architecture's command, control, and communication
mechanism to verify that the implemented resolution of
mappings between concepts across layers of abstraction is
consistent.

Notion 11: The ability of an information systems architecture to enable the
use of abstraction requires the information systems
architecture's command, control, and communication
mechanism to verify that the implemented resolution of multiple
views within a layer of abstraction is consistent.

To verify the that an implemented resolution is consistent, the information

systems architecture must ensure that all shared aspects or interrelationships between

viewpoints or layers have been resolved simultaneously (Interviews A.11.1 and

A. 12.1). Viewing each shared aspect as a dependency along a dimension,

interoperability between components within a layer or across layers requires that a

consistent set of invariants (i.e., rules that do not change) be simultaneously established

for each dependency in the set of dependencies. At a minimum, the architecture must

verify, if not actively enable, the resolution of all dependencies.

In resolving dependencies, agreement on both the syntactic form of the

specification of the dependency and its semantic content must be achieved (Interview

A. 12.1). To the extent that limitations in the aspects exists, the specification of the

invariant will have to abide by those inherent limitations. Formally stated, the

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

requirements for establishing a consistent resolution of the shared aspects between

viewpoints or layers become Notion 12 and Notion 13 listed below.

Notion 12: The ability of the information systems architecture to enable the
consistent resolution of the dependencies between viewpoints or
layers requires that the command, control, and communication
mechanism verify that an invariant has been established for each
dependency.

Notion 13: The ability of the information systems architecture to enable the
consistent resolution of the dependencies between viewpoints or
layers requires that the command, control, and communication
mechanism verify that both a syntactic and a semantic invariant
have been established for each dependency.

In order to deal with complexity created by size, the information system’s

architecture must enable the use of abstraction. Because individual abstractions

emphasize some of the system’s properties while suppressing others, important

relationships between individual abstractions are often not identified or resolved until a

detailed design of the systems specification is undertaken. In order to ensure that all of

the perspectives both within a layer of abstraction and across layers of abstraction of

the system are simultaneously supported, the specification of the integration of all the

perspectives in the detail design must provide a consistent integration.

Synthesis of Propositions

The four new notions developed in the third round focus on the use of

abstraction as a tool in building an information systems architecture. To synthesis

these notions into propositions, the validity of the notions must be established through

comparison with the appropriate literature. In this section, these four notions are

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

compared with the systems development literature that focuses on the use of abstraction

in systems development.

To properly use abstraction, Berzins, Gray, and Naumann (1986) state that the

concept that qualifies as an abstraction must be able to be described, understood, and

analyzed independently of the mechanism that will eventually be used to realize the

abstraction. When using abstraction across levels of detail, Dijkstra (1982) states that

it is “essential for each level to make a clear separation between ‘what it does’ and

‘how it works.’” By separating a level into an external view based upon “what” the

level does, that is, a behaviorally based view, and an internal view of “how” the level

implements the behavior, an implementation based view, Abelson and Sussman (1985)

show that an “abstraction barrier” can be created that allows the abstraction to be

described, understood, and analyzed independently of the encapsulated mechanism that

will eventually be used to realize the abstraction.

Viewed in terms of an abstraction barrier, the external specification of the

behavior of a level of abstraction must take a declarative form while the internal

specification of the implementation must take a procedural form (Dijkstra, 1976).

Although proper encapsulation allows one to change an implementation with a limited

amount of effort, encapsulation by itself does not ensure that any specific

implementation preserves the information correctness of the external view (Wirfs-

Brock, 1990). To preserve the information correctness of the external declarative

view, a consistent mapping between the external view and the internal procedural view

of the level must be achieved (Meyer 1988; Hoare, 1994).

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

i
In order to use abstraction, the information systems architecture must ensure

that any specific implementation of an external view preserves the informational

correctness of that view. To preserve the informational correctness of the external

view, a consistent mapping between the external view and the internal view of the level

must be achieved. Comparing the results of the literature on the use of abstraction with

Notion 10 results in the synthesis of the proposition listed below.

Proposition 10: The ability of an information systems architecture to enable the
use of abstraction requires the information systems
architecture's command, control, and communication
mechanism to verify that the implemented resolution of
mappings between concepts across layers of abstraction
preserves the informational correctness of the external view of
each layer.

Within a level of abstraction, multiple viewpoints can be defined by the

suppression of details irrelevant to the perspective under consideration. Again, a

declarative specification of the behavior of each of these viewpoints should be defined

independently of the procedural specification of how the specification of the viewpoints

will be implemented (Zave, 1993b). To ensure that all of the viewpoints’ specifications

are simultaneously preserved, the implementation of these viewpoints must satisfy the

conjunction of the specific requirements for all viewpoints (Zave, 1993b; Osser,

Kaplan, Harrison, Katz, and Kruskal, 1995). Comparing the results of the literature on

the use of abstraction with Notion 11 results in the synthesis of the proposition listed

below.

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Proposition 11: The ability of an information systems architecture to enable the
use of abstraction requires the information systems
architecture's command, control, and communication
mechanism to verify that the implemented resolution of
viewpoints within layers of abstraction preserves the
informational correctness of the conjunction of the external
views of each of the individual viewpoints.

In order to rigorously define the behavioral view of a level of abstraction or a

viewpoint and correctly map that declarative specification onto a procedural

specification, Meyer (1988) believes that each abstraction must be defined in terms of a

contract by defining its pre-conditions, post-conditions, and context which is specified

by defining the invarinats—or what must always be true from the external perspective of

the abstraction. In defining and mapping each behavioral specification onto a

declarative specification, common dimensions between behavioral views will be found.

Given a common dimension between two behavioral views, the consistent resolution of

these views will require the consistent resolution between views along common

dimensions (Malone and Crowston, 1994; Zave, 1993a). If a consistent resolution is

not established, the interaction of the two behavioral views along the common

dimension will result in an inconsistent or contradictory set of behaviors (Zave, 1993a).

To ensure the consistent resolution of the behavioral specifications of

abstractions, the implementation of the invariants along common dimensions between

behavioral views requires that these views implement a consistent set of invariants. To

ensure a consistent resolution of the behavioral specifications of abstractions, the

information system’s architecture must verify that the implementation establish a

consistent set of invariants along the common dimension between behavioral

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

viewpoints. Comparing the results of the literature on the use of abstraction with

Notion 12 results in the synthesis of the proposition listed below.

Proposition 12: The ability of the information systems architecture to enable the
consistent resolution of the dependencies between behavioral
abstractions requires that the command, control, and
communication mechanism verify that a consistent set of
invariants has been established for each dependency between
behavioral views.

In order to establish a consistent invariant between behavioral views, the

invariant must establish both syntactic and semantic invariance (Dijkstra, 1976; Gries,

1981; Meyer, 1988). Without semantic invariance, syntactic invariance alone will not

be sufficient to establish a consistent set of invariants between views. Comparing the

results of the literature on the specification of invariants with Notion 13 results in the

synthesis of the proposition listed below.

Proposition 13: The ability of the information systems architecture to enable the
consistent resolution of the dependencies between views requires
that the command, control, and communication mechanism
verify that both a syntactic and a semantic invariance have been
established for each dependency.

In order to present the overall relationship between the propositions developed

in this round relative to the proposition developed in the previous two rounds, a

graphical representation of all of the propositions and the links between them is

presented in Figure 5.1. In Figure 5.1, the functional requirement that the referent

architecture’s command, control, and communication mechanism achieve an alignment

between the strategic requirements and functional requirements of the enterprise implies

that the conjunction of different views within each layer of abstraction be conjoined in

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

a consistent manner (i.e., Proposition 11) and that the mapping between layers of

abstraction be isomorphic (i.e., Proposition 10). Taken together, Propositions 6, 8, 9,

10, and 11 imply that the command, control, and communication mechanism of the

referent architecture must have the ability to bind (i.e., Proposition 8) the data,

process, and timing (i.e., Proposition 6) of different views of a component within each

layer of abstraction in a consistent manner (i.e., Proposition 11) while also binding the

data, process, and timing of the different components that exist in different contexts

(i.e., Proposition 9) across layers of abstraction (i.e., Proposition 10).

To integrate different views or components implies that the command, control,

and communication mechanism of the architecture must simultaneously resolve all of

the common dimensions (i.e., dependencies) between views or components by

establishing a rule or protocol for how each view or component will utilize each

common dimension (i.e., Proposition 12). Establishing a common rule or protocol

requires that the command, control, and communication mechanism of the architecture

establish a common set of concepts by defining their meaning (i.e., Proposition 13) and

a notation that can be used to express them (i.e., Proposition 13).

In synthesizing these propositions through constant comparison with the

appropriate literature, the fact that support for all of these propositions can be found in

the literature suggests that these propositions represent significant elements of the

evolving referent architecture. Although all of these propositions are significant, the

adequacy of the specification of the command, control, and communication mechanism

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Evergreen

Alignment

P l l

P7

P5

P10

P2

P6

P4

Resolve
Dependencies

Establish
Invariants

Figure 5.1 Overall Relationship Between Propositions
Developed in Round 2 and 3

107

P13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

as a referent architecture depends on the completeness of the propositions as well their

correctness. Under the ground theory research methodology, the correctness and the

completeness of the referent architecture are established by the constant comparison of

the evolving architecture with the data and literature.

Validation of Propositions

To validate the correctness and the completeness of the four propositions

developed in the third round, these four propositions where shown to representatives of

the participating organizations. As a group, these four propositions where found to be

both correct and complete given their level of specification and the experience of the

members with architectural implementations. However, the members of the ANSI’s

X3H7 Technical Committee and the OMG’s Business Object Task Force felt that the

completeness of the set of propositions should be verified by comparing the

propositions to known architectural implementation that have the same stated goals as

this research effort. Specifically, these groups recommended that the set of

propositions be compared with SEMATECH’s CIM Framework.

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

I

CHAPTER VI

THE FOURTH ROUND

The fourth round of this research study focuses on learning more about the

functional requirements of establishing a consistent resolution between multiple

viewpoints within a layer of abstraction and between concepts across layers of

abstraction. To gain insight into these requirements, the members of the OMG's

Business Object Task Force and the ANSI's X3H7 Technical Committee felt that this

research effort would benefit by studying any existing architectural frameworks built to

facilitate plug-compatible software solutions. To the knowledge of the OMG's

Business Object Task Force and the ANSI's X3H7 Technical Committee,

SEMATECH's CIM (Computer Integrated Manufacturing) Framework represents the

largest know commercial implementation of a plug-compatible software solution.

Identification of_Data Collection Sites

SEMATECH's CIM Framework is composed of seven semi-conductor manufacturing

abstractions or components that are typically embodied in a wafer fab's Manufacturing

Execution System (MES) (SEMATECH, 1994). For each one of these components in

SEMATECH's CIM Framework, SEMATECH maintains a dedicated component

development team that is responsible for specification of the component's functionality,

services, and interfaces. In addition to these component specific teams, SEMATECH

maintains a dedicated CIM Framework Architecture Team that is responsible for

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

resolving dependencies between components in order to ensure interoperability. Given

the focus of the fourth round of this reset study, SEMATECH's CIM Framework

Architecture Team was selected as the appropriate data collection site.

Through contacts at the OMG and ANSI, SEMATECH was contacted and asked

to participate in this research effort. Starting with an invited presentation to

SEMATECH's CIM Framework Architecture Team, SEMATECH and its member

companies ultimately agreed to provide unlimited access to SEMATECH's CIM

Framework Architecture Team and proprietary implementations of its framework by

member companies. To achieve this access, non-disclosure agreements were signed

with SEMATECH and all member companies. Although SEMATECH's CIM

Framework Specification has been released into the public domain, the knowledge

gained through member-company implementations of the CIM Framework specification

remains proprietary.

Analysis, of Interviews

Although a number of issues exist within the CIM Framework, all but one of

these issues were found to represent the implications of the previously discovered

propositions rather than new insights into the functional requirements for a plug-

compatible component architecture. By studying CIM Framework implementation

projects, a new insight for establishing interoperability between components was found

to exist. In addition to the need to establish syntactic and semantic invariance,

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

interoperability between components requires that the components share a common

problem-solving or solution approach (Interview A. 13.1).

Since multiple solution approaches exist for most system specifications, the

interoperability of plug-compatible components requires that components share a

common solution approach. Because the solution approach represents a dependency

between components, the requirement that components establish cognitive invariance

between components represents an extension of the requirements already detailed in

Notion 13-that components establish syntactic and semantic invariance. By extending

Notion 13 to include this new requirement, the formal statement of Notion 13 becomes

Notion 13a listed below.

Notion 13a: The ability of the information systems architecture to enable the
consistent resolution of the dependencies between viewpoints or
layers requires that the command, control, and communication
mechanism verify that a syntactic, semantic, and cognitive
invariant has been established for each dependency.

Synthesis of Propositions

Because multiple cognitive approaches exist that will fulfill the same

requirements, interoperability between components requires that components share a

common cognitive approach (Hoare 1994; Shaw and Garland, 1996). Because the

specification of the common cognitive approach is required for a consistent resolution

of the dependencies between multiple views, establishing a common cognitive approach

represents a requirement for the information systems architecture’s command, control,

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

and communication mechanism. Comparing the results of the literature on software

architecture with Notion 13a results in the synthesis of the proposition listed below.

Proposition 13a: The ability of the information systems architecture to enable the
consistent resolution of the dependencies between views requires
that the command, control, and communication mechanism
verify that syntactic, semantic, and cognitive invariance have
been established for each dependency.

By substuting Proposition 13a for Proposition 13 in Figure 5.1, Figure 6.1

shows the overall relationship between all of the propositions developed in rounds 2, 3,

and 4 of this research effort.

Validation of Propositions

All of the functional requirements previously formulated as propositions were

found to be necessary to the design of a plug-compatible information systems

architecture by SEMATECH’s CIM Framework Architecture Team. Although the

members of the CIM Framework Architecture Team, OMG’s Business Object Task

Force, and the ANSI’s X3H7 Technical Committee could not think of any additional

requirements or issues that should be addressed, none of the members of these groups

could determine if the set of propositions, as a whole, represented a complete

specification of the referent architecture without providing a complete implementation.

Given the existence of theoretical saturation in this research effort, a final validation of

the propositions was performed by integrating the set of propositions into a model of an

information systems architecture for presentation to the CIM Framework Architecture

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Team, OMG’s Business Object Task Force, and the ANSI’s X3H7 Technical

Committee. In the next chapter, the integrated model is presented along with the

comments of these groups.

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Evergreen

Alignment

P2

P6 P10

PI

P l lP9

P7

P5

Resolve
Dependencies

P12

P13a Establish
Invariants

Figure 6.1 Overall Relationship Between Propositions
Developed in Round 2, 3, and 4

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER VH

SUMMARY

In order to help validate the set of propositions discovered through this research

effort, a model based upon these propositions was developed and shown to members of

the OMG's Business Object Task Force and the ANSI’s X3H7 Technical Committee.

In this chapter, an overview of the model is presented along with some of its

implications.

Integrating .the Propositions

The first three propositions imply that a business exists as a bounded system

within an environment as shown in Figure 7.1. As a bounded system, the emergent

properties of the system, visible to its external environment, result from the

architectural structure of the interrelationships between its internal components. In

today’s environment, changes both in the external requirements and in the capabilities

of the system’s internal components are commonplace. To deal with these changes, the

information systems architecture must enable the reconfiguration of the structure of the

interrelationships between the internal components either to meet changing external

requirements or to accommodate new internal component capabilities (Proposition 1).

To help ensure that the requisite external solution is enabled, the architectural

design process must be focused on providing the required set of emergent properties by

specifying an appropriate architectural structure for the internal components

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

(Proposition 2). Because “what” the architectural structure must produce needs to be

known before the design process can determine “how” to provide it, a independent

declarative specification of the external requirements represents the first step in

building the requisite business solution (Proposition 3).

System
Environment

Emergent
Properties

System
Components

Figure 7.1 A System and Its Environment

In order to specify the external requirements, an organization must decide what

aspects of its environment are relevant given its objectives. Because an organization

lacks a context for making any decisions until it enunciates its values, an organization

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

f

must explicitly state the worth that it places on each aspect of its external environment

in order to specify its external requirements (Proposition 4). In designing a system

whose emergent properties will meet the external requirements, an organization must

also decide what aspects of technology are relevant and explicitly state the worth it

places on the aspects of the technology that it selects in implementing its internal

components (Proposition 4).

Unless an organization can rigorously specify the value of all relevant aspects, it

will lack a means for measuring the extent to which the emergent properties meet the

external requirements. If the size of the declarative specification of the external

requirements is large, abstraction should be used to reduce the specification to a

manageable size (Proposition 7). In forming these abstractions, abstractions based both

on the level of detail and perspective can be used. Given an explicitly started set of

values, the quality of the fit between the emergent properties and the external

requirements will depend on the ability of the information systems architecture to

produce a design that aligns all relevant aspects as consistently as possible (Proposition

5). When inconsistencies or contradictions arise, management must specify a partial

ordering to resolve the inconsistency. In the case of contradictions, a new design

stating “how” the relevant aspects are to be integrated must be specified .

In designing the structure of the interrelationships between the internal

components, the information systems architect must specify not only “how” but also

“when” the internal components will interact with each other in order to provide the

emergent properties. Therefore, the complete system specification must include a

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

description of “how” and “when” the internal components will interact to produce the

emergent properties in addition to a declarative specification of the external

requirements of the system (Proposition 6).

As can be seen in Figure 7.2, the top-down mapping of these declarative

abstractions onto actual physical entities within the level of detail requires the physical

entities to assimilate multiple abstractions or roles both from different viewpoints and

from different levels of detail. For the entities in the physical implementation to

interoperate properly, a consistent integration of these abstractions must be achieved.

Enterprise

Marketing Finance Production

Factory

Figure 7.2 Integration of Views

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

One way to achieve a consistent integration of multiple abstractions is to use

ubiquitous standardization. Under ubiquitous standardization, all contradictory or

inconsistent integrations are resolved by a centralized authority that specifies a one-

size-fits-all solution. Since all the physical entities are standardized, the centrally

specified rule will always result in a consistent integration.

If a single organization-wide integration cannot be found that works sufficiently

well in all instances, then inclusion of instance specific requirements into the

integration process will be necessary (Proposition 9). In this case, the integration of

the abstractions cannot be determined a priori since the resolution or integration of the

abstractions cannot be performed until after the instance specific requirements become

known (Proposition 8). To ensure that the emergent properties of the system are

preserved during the integration process, the resolution both of abstraction across levels

of detail and of perspectives must preserve the informational correctness of the each

view (Proposition 10 and 11).

In addition to requiring a consistent resolution of abstractions within each

physical entity, interoperability under the plex structure defined in Figure 7.2 also

requires a consistent resolution of abstractions between physicals entities. For each

shared aspect or dimension that exists between physical entities, a common resolution

of the dimensions must be established in order to achieve interoperability (Proposition

12). In general, a common resolution requires that a syntactic, semantic, and cognitive

invariant be established for each dependent dimension between physical entities

(Proposition 13a).

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Implications of the Model

Although this model seems deceptively simple, the implications of this model

represent a significant departure from the current architectural principles of at least two

of the most prominent architectural efforts in the area, for example, SEMATECH’s

CIM Framework and the OMG’s OMA. Where the OMG and SEMATECH take a

bottom-up approach to the design of an architecture, this result shows that achieving

interoperability with flexibility requires the use of a top-down layered architecture that

can be instantitated layer by layer. While SEMATECH and the OMG believe that the

specification of a syntactic interface between components is sufficient for defining

interoperability, this research shows that a syntactic, semantic, and cognitive invariant

must be established between components to achieve interoperability.

In addition to these two issues, this research also implies that the current

implementation of the object-oriented paradigm does not contain the necessary and

sufficient capabilities required for building a mass customization based software

architecture. Under its current implementation, the object-oriented paradigm

assimilates, resolves, and binds the declarative abstractions to methods at the point in

time that a method is written. Although methods can subsequently be inherited, no

mechanism exists for identifying or resolving inconsistencies or contradictions between

methods inherited through multiple inheritance. Until the object-oriented paradigm can

provide mechanisms for dynamically inheriting new types and consistently resolving

dependencies between them before binding, the paradigm will not contain the

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

functional requirements necessary for a mass customization based software

architecture.

Validation of the Model

As this model developed through the course of this research effort, the model,

along with its implications, was presented to the OMG’s Business Object Task Force,

ANSI’s X3H7 Technical Committee, and SEMATECH’s CIM Framework Architecture

Team. Because the implications of the model were completely contradictory to some of

the basic architectural principles of the OMA and the CIM Framework, the initial

reaction to the model was, at times, openly hostile.

Fortunately, a few members of the ANSI’s X3H7 Technical Committee felt that

the implications of the model were correct from the beginning. Based upon their

support, a dialog addressing the implication of the referent architecture was established

within the OMG’s Business Object Task Force that continues to flourish today. As a

result of this dialog, the OMG in its March 1997 meeting in Austin, Texas, a

specifically recognized the need to specify its architecture in a top-down layered

manner and also formed the Omega’s Formal Semantics Specification Special Interest

Group.

In addition to the acceptance of two of the implications of this model, the

Omega’s Business Object Task Force is currently debating how roles should be

specified and what will be required to identify and then resolve inconsistencies or

contradictions between them. At this time, the Omega’s Business Object Task Force,

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

ANSI’s X3H7 Technical Committee, and SEMATECH’s CIM Framework Architecture

Team believe that the basic propositions of the referent architecture developed through

this research effort are correct and most likely complete.

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER Vm

LIMITATIONS, CONTRIBUTIONS,

AND FUTURE RESEARCH

Limitations of the. Research

In this exploratory research study, as in all research studies, a number of

limitations exist. To help ensure that the research finding are properly interpreted

within the context of the selected research methodology, the limitations of this research

study must be understood.

Because this research study is based upon an exploratory research methodology,

these exists no provably correct way to test that the set of generated propositions in this

study are complete or correct. Instead, the internal validity, external validity, and the

completeness of the set of propositions was established by achieving a consensus

among the participating subject matter experts.

If the subject matter experts participating in this study were to represent the

“correct” set of all knowing subject matter experts, then the consensus of these experts

would, in fact, ensure that the set of propositions are complete and correct. Short of

finding the “correct” set of all knowing subject matter experts, the validity of the

findings of this research study are directly related to the limitations found in the group

of subject matter experts participating in this study.

Since no known solution exists to the issues addressed in this research study,

one can assume that either no subject matter experts exist that have identified a solution

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

or that the subject matter experts that do exist that have identified a solution are not

willing to share their solution with anyone—for competitive reasons. Because all of the

subject matter experts participating in this study are members of nationally recognized

standard setting bodies, the most one can say about the finding of this research study is

that the best available subject matter experts found them to be internally consistent,

externally valid, and complete.

Contributions of the Research

To date, the output of this research effort represents a number of contributions

towards the goal of providing rapid development of flexible software solutions. These

contributions include:

- The identification of mass customization as the referent paradigm for
the rapid development of flexible software solutions,

- The identification of architecture as the critical issue in the
development of mass customization solution,

- The identification of command, control, and communication as the
critical issue in the development of an architecture,

- The definition of the functional requirements of a command, control,
and communication mechanism for a mass customization based
architecture,

- The development of a theoretical foundation for the flexible software
factory.

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

f

Future Research Directions

In order to provide a complete instantiation of the propositions discovered in

this research study, a number of issues will need to be addressed through future

research efforts. These research efforts should address the following issues:

- Refine, develop, and test the propositons developed in this
research effort,

- Refine and develop the notions of command, control, and
communication mechanism for a information system architecture,

- The identification of the dimensions of a software component
within a given level of abstraction.

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

REFERENCES

Abelson, H. and Sussman, G. (1985). Structure and Interpretation of Computer
Programs. Cambridge: The MIT Press.

Allen, B. R., & Boynton, A. C. (1991). Information architecture: In search of
efficient flexibility. MIS Quarterly. 15. 435-445.

Adler, P. S. (1991). Workers and flexible manufacturing systems: Three installations
compared. Journal of Organizational Behavior. 12(5), 447-460.

Barnes, B., & Bolinger, T. (1991). Making reuse cost effective. IEEE Software. 8
(1), 13-24.

Berzins, V., Gray, M., & Naumann, D. (1986). Abstraction-based software
development. Communications of the ACM. 29 (5), 1986, 403-412.

Blau, P. M., & Schoenherr, P. A. (1971). The Structure of Organizations. New
York: Basic Books.

Boynton, A. C., & Victor, B. (1991). Beyond Flexibility: Building and Managing the
Dynamically Stable Organization. California Management Review. 34 (1), 53-
66 .

Boynton, A. C., Victor, B., & Pine, B. J. (1993). New competitive strategies:
Challenges to organizations and information technology. IBM Systems Journal.
32 (1), 40-64.

Bums, T ., & Stalker, G. M. (1961). The Management of Innovation. Chicago:
Quadrangle Books.

Chandler, Jr., A. D. (1962). Strategy and Structure: Chapters in the History of
American Enterprise. Cambridge: The M.I.T. Press, Cambridge.

CIM-OSA (Computer Integrated Manufacturing - Open Systems Architecture). (1993).
ESPRIT Project 688. Brussels, Belgium: ESPRIT Consortium AMICE.

Codd, E. F. (1971). A relational model of data for large shared data banks.
Communications of the ACM, 13 (6), 377-387.

Cusumano, M. (1989). The software factory: A historical interpretation. IEEE
Software, 23-30.

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

f

Cusumano, M. A. (1991). Japan'.s .Software Factories; A Challenge to U.S.
Management. New York: Oxford University Press.

Dahl, O., Dijkstra, E., & Horace, C. A. R. (1972). Structured Programming.
London, England: Academic Press.

Davis, S. M. (1987). Future Perfect. Reading, MA: Addison-Wesley.

Delbecq, A. L., Van de Ven, A. H., & Gustafson, D. H. (1975). Group Techniques
for Program Planning: A Guide to Nominal Group and Delphi Processes.
Glenview, IL: Scott-Foresman.

Dertouzous, M., Lester, R. K., Solow, R. M., & the MIT Commission for Industrial
Productivity. (1989). Made in America: Regaining the Productive Edge.
Cambridge: The MIT Press.

Dijkstra, E. W. (1976). A Discipline of Programming. Englewood Cliffs, NJ:
Prentice Hall.

Dijkstra, E. W. (1982). Selected Writings on Computing: A Personal Perspective.
Berlin, Germany: SpringerVerlag.

Drucker, P. F. (1995). The information executives truly need. Harvard Business
Reyie-W, 73 (l), 54-62.

Duncan, R. (1979). What is the right organization structure? Organization
Dynamics. Winter, 59-80.

Eisenhardt, K. M. (1989). Building Theories from Case Study Research. Academy of
Management Review. 14, 532-550.

Galbraith, J. R. (1973). Designing Complex Organizations. Reading, MA:
Addison-Wesley.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design Patterns —
Elements for Reusable Oriented Software. Reading, MA: Addison-Wesley.

George, J. F., and King, J. L. (1991). Examining the computing and centralization
debate. Communications of the ACM, 34 (7), 63-77.

Ginzberg, M. J. (1981). Early Diagnosis of MIS Implementation Failures: Promising
Results and Unanswered Questions. Management Science. 27 (4), 459-478.

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Glaser, B. G. (1978). Theoretical Sensitivity: Advances in the Methodology of
Grounded Theory. Mill Valley, CA: The Sociology Press.

Glaser, G. B., and Strauss, A. L. (1967). The Discovery of Grounded Theory:
Strategies for Qualitative Research. New York: Aldine Publishing Company.

Goodhue, D. L., Wybo, M. D., & Krisch, L. J. (1992). The Impact of Data
Integration on the Costs and Benefits of Information Systems. MIS Quarterly.
16, 293-311.

Gries, D. (1981). The Science of Programming. Berlin, Germany: Springer Verlag.

Griss, M. L. (1993). Software Reuse: From Library to Factory. IBM Systems
JoumaL 32 (4), 548-566.

Haeckel, S. H., & Nolan, R. L. (1993). Managing by wire. Harvard Business
Review, 71 (5) 122-132.

Hammer, M. (1990). Reengineering works: Don't automate, obliterate. Harvard
Business Review. 104-112.

Henderson, J. C., & Venkatraman, N. (1993). Strategic alignment: Leveraging
information technology for transforming organizations. IBM Systems Journal.
32 (1), 4-16.

Hoare, C. A. R. (1994). Mathematical Models for Computing Science. United
Kingdom: Oxford.

Huber, G. (1990). A theory of the effects of advanced information technologies on
organizational design, intelligence, and decision making. Academy of
Management Review, 15,47-71.

Humphrey, W. (1989). Managing the Software Process. Reading, MA: Addison-
Wesley.

IBM Corporation. (1984). Business Systems Planning: Information Systems Planning
Guide (4th ed.). White Plains, NY:

Iman, R. L., and Conover, W. J. (1989). Modem Business Statistics. New York:
Wiley.

ISO/IEC JTC1/SC21/WG7. (1995). Open Distributed Processing - Reference Model:
Part 2: Foundations. (IS 10746-2 / ITU-T Recommendation X.902).

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Jacobson, I. (1992). Object-Oriented Software Engineering Reading, MA: Addison-
Wesley.

Johnson, H. T. & Kaplan, R. S. (1987). Relevance Lost: The Rise and Fall of
Managerial Accounting. Boston: Harvard Business School Press.

Keen, P. G. W. (1993). Information technology and the management difference: A
fusion map. IBM Systems Journal. 32 (1), 17-39.

King, W. R. (1978). Strategic Planning for Management Information Systems. MIS
Quarterly, 2, 27-37.

Klir, G. J. (1985). Architecture of Systems Problem Solving. New York: Plenum
Press.

Luftman, J. N., Lewis, P. R., & Oldach, S. H. (1993). Transforming the enterprise:
The alignment of business and information technology. IBM Systems Journal.
32 (1), 198-221.

Malone, T. W. (1987). Modeling coordination in organization and markets.
Management Science. 33, 1317-1332.

Malone, T. W., and Crowston, K. (1994). Toward an interdisciplinary theory of
coordination. Computing Surveys. 26, (1), 87-119.

Manna, Z., and Waldinger, R. (1985). The Logical Basis for Computer
Programming. Reading, MA: Addison-Wesley.

Markus, M. L. (1983). Power, Politics, and MIS Implementation. Communications
of the ACM. 26 (6), 430-444.

Markus, M. L. (1992). Will The Real Qualitative Researcher Please Stand Up?
Alternative Approaches to Theory Building Research. The Claremont Graduate
School, Programs in Information Science, Working Paper.

Markus, M. L., and Robey, D. (1988). Information technology and organization
change: Causal structure in theory and research. Management Science. 34 (5),
583-598.

Martin, J. M. (1990). Information Engineering (Volumes 1, 2, and 3). Englewood
Cliffs, NJ: Prentice-Hall.

McGregor, C., and Sykes, D. (1991). A Paradigm for Reuse. American
Programmer. 4 (10), 30-39.

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

!

Meyer, B. (1988). Object-Oriented Software Construction. Englewood Cliffs, NJ:
Prentice Hall.

Miles, M. B. and Huberman, A. M. (1984). Qualitative Data Analysis: A Sourcebook
of New Methods. Newbury Park, CA: Sage Publications.

Miles, R. E., and Snow, C. S. (1986). Organizations: New concepts for new forms.
California Management Review. 28 (3), 62-73.

Miller, G. (1956). The magical number seven, plus or minus two: Some limits on our
capacity for processing information. The Psychological Review. 63 (2), 86-95.

Nonaka, I. (1988). Creating organizational order out of chaos: Self-renewal in
Japanese firms. California Management Review. 30 (3), 57-73.

Niederman, F., Brancheau, J. C., & Wetherbe, J. C. (1991). Information systems
management issues for the 1990’s. MIS Quarterly. 15, 475-500.

OMG. (1991). Common Object Request Broker Architecture and Specification.
Object Management Group, Document 91.12.1.

Orlikowski, W. J. (1993). CASE tools as organizational change: Investigating
incremental and radical changes in systems Ddevelopment. MIS Quarterly. 17,
308-340.

Orlikowski, W. J. & Robey, D. (1991). Information technology and the structuring of
organizations. Information Systems Research. 2 (2), 143-169.

Osser, H., Kaplan, M., Harrison, W., Katz, A., Kruskal, V. (1995). Subject-oriented
composition rules. QOPSLA ‘95 ACM SIGPLAN Notices. 30 (10),235-264.

Pawson, R., Bravard, J., & Cameron, L. (1995). The Case for expressive systems.
Sloan Management Review. 36 (2), 41-48.

Porter, M. (1985). Generic competitive strategies, in Competitive Advantage. New
York: The Free Press.

Pine, B. J. (1993). Mass Customization: The New Frontier in Business Competition.
Boston: Harvard Business School Press.

Pine, B. J., Victor, B., & Boynton, A. C. (1993). Making mass customization work.
Harvard Business Review. 93 (6), 108-119.

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Piore, M. J. & Sable, C. F. (1984). The Second Industrial Divide: Possibilities for
Prosperity. New York: Basic Books.

Prieto-Diaz, R. (1 9 9 3) . Status report: Software reusability. I E E F . S o f t w a r e . 1 0 (5) ,

6 1 - 6 6 .

Pybum, P. J. (1983). Linking the MIS Plan with corporate strategy: An exploratory
study. MIS Quarterly. 7, 1-14.

Quinn, J. B., & Paquette, P. C. (1990). Technology in services: Creating
organizational revolutions. Sloan Management Review. 31 (2), 67-78.

Rockart, J. F. (1979). Chief executives define their qwn data needs. Harvard
B.usiness-ReYiew, 81-93.

SEMATECH. (1994). Computer Integrated Manufacturing (CIM) Application
Framework Specification 1.1. Austin, TX.

Shaw, M. (1984). Abstraction techniques in modem programming languages. IEEE
Softaaie, l (4), 8-14.

Shaw, M., & Garland, D. (1996). Software Architecture: Perspectives on an
Emerging Discipline. Englewood Cliffs, NJ: Prentice Hall.

Sowa, J. F., & Zachman, J. C. (1992). Extending and formalizing the framework for
information systems architecture. IBM Systems Journal. 31 (3), 590-616.

SRI International. (1993). Implementing Software Reuse: Phase 1. Kev Findings and
Conclusions. Menlo Park, CA.

Stalk, Jr., G. (1988). Time—The next source of competitive advantage. Harvard
Business Review. 66 (4), 41-51.

Stecher, P. (1993). Building business and application systems with the retail
application architecture. IBM Systems Journal. 32 (2)..

Strauss, A. L. (1987). Qualitative Analysis for Social Scientists. Cambridge:
Cambridge University Press.

Strauss, A. L., & Corbin, J. (1990). Basics of Qualitative Research: Grounded
Theory Procedures and Techniques. Newbury Park, CA: Sage Publications.

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Swanson, K., McComb, D., Smith, J., & McCubbrey, D. (1991). The application
software factory: Applying total quality techniques to systems development.
MIS Quarterly. 15, 566-579.

Tannenbaum, A. S. (1990). Structure Computer Organization. Englewood Cliffs,
NJ: Prentice-Hall.

Taylor, D. A. (1995). Business Engineering with Object Technology. New York:
Wiley.

Taylor, F. W. (1911). Scientific Management. New York: Harper.

Texas Instruments. (1994). Reengineering of Information Technology at Texas
Instruments: Our Challenge - Change Faster Than Change. Plano, TX.

Thompson, J. D. (1967). Organizations in Action. New York: McGraw-Hill.

Toffler, A. (1990). Poweshift. New York: Bantam Books.

Van Maanen, John (Ed.). (1983). Qualitative Methodology. Newbury Park, CA:
Sage Publications.

Venkatraman, N. (1986). Measurement of business performance in strategic research:
A Comparison of approaches. Academy of Management Review. 11,801-814.

Venkatraman, N., & Camillus, J. C. (1984). Exploring the concept of ‘fit’ in
strategic management. Academy_of Management Review. 9, 513-525.

Wallace, W. L. (1971). The Logic of Science in Sociology. New York: Aldine.

Wheeler, E. F., & Ganek, A. G. (1988). Introduction to Systems Application
Architecture. IBM Systems Journal. 27 (3), 250-263.

Womack, J. P., Jones, T. J., & Roos, D. (1990). The Machine that Changed the
World. New York: MacMillan.

Wirfs-Brock, R., Wilkerson, B, & Wiener, L. (1990). Designing Object-Oriented
Software. Englewood Cliffs, NJ: Prentice Hall.

Yin, R. K. (1989). Case Study Research: Design and Methods (revised ed.l.
Newbury Park, CA: Sage Publications.

Yourdon, E. (1975). Techniques of Program Structure and Design. Englewood
Cliffs, NJ: Prentice Hall.

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Yourdon, E., & Constantine, L. (1975). Structured Design: Fundamentals of a
Discipline and Computer Program and Systems Design. Englewood Cliffs, NJ:
Yourdon Press.

Zachman, J. A. (1987). A framework for information systems architecture. IBM
Systems Journal. 26 (3), 276-292.

Zave, P. (1993a). Feature interaction and formal specification in telecommunications.
Computer. 26 (8), 20-28.

Zave, P. (1993b). Conjunction as composition. ACM Transactions on Software
Engineering. 2 (4), 379-386.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

APPENDIX

TRANSCRIPTS OF INTERVIEWS

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A .I . Interview 1

POSC (Mobil)

January, 1995

D. R. - Mobil

A. 1.1. Interview 1 Notes

WDB: Most Fortune 500 companies are facing a competitive business environment that
requires increased flexibility and reduced time-to-market. In response to these
competitive pressures, most companies have recently undertaken a business
process re-engineering (BPR) effort. These BPR efforts often reveal that
information systems as currently designed and implemented represent a major
barrier increasing flexibility and reducing time-to-market. Are these same
issues of concern to Mobil and, if so, why?

DR: As an "oil company," Mobil's competitive advantage is based upon finding oil
with more accuracy and therefore less cost than our competitors. With the cost
of drilling a well in the ten million to hundred million dollar range, Mobil is
always looking for ways to reduce or manage the risk associated with drilling.
In E&P (Exploration and Production), we have always tried to managed that
risk by using information. To generate information we collect technical data,
obtained from a number of sources such as core samples or seismic surveys, and
build geological models that use this technical data to predict where we can find
oil. For our IS group, there are two issues in this whole E&P process. The
first issue is that not only the amount of data but also the types of data that we
gather are increasing dramatically - and this really creates two separate issues
itself. The sheer volume of data is not necessarily an insurmountable problem
by itself until you consider the processing power you must have to integrate and
use all of this data - which is why increases in the types of data create such a
big problem. Seismic data is actually real-time analog data that we digitize for
convenience; whereas, core samples represent a number of static properties.
The basic difference in the format of these different types of data make storage
and integration of them a significant problem, because we can have a number of
different types of data about the same geological location. So, our first
challenge is to find a way to create a standard index that can be used for
recording the existence of a large volume of different types of data and the
locations of that data. The second issue we have to deal with is the integration

135

t

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

of these different formats on demand as we design and built new geological
models. So to get back to your question, yes, Mobil’s IS group is faced with
reducing cycle-time and increasing flexibility. We must reduce the time to find
and integrate different types of data while providing the flexibility to support
designing and building new geological models as our petroscientists develop
new ways to analyze things.

WDB: Does you IS systems currently support your business requirements, and if not,
how is your IS department attempting to restructure your systems to address
these issues?

DR: A study conducted by our the Technical Data Management Study (DATAMS)
team of the type of problems encountered by our petroscientists identified
serious problems in locating data, data quality, and data accessibility. As a
solution to these problems, the DATAMS team proposed the development and
implementation of a single strategy for managing and administering shared
technical data throughout E&P. The DATAMS team developed a list of seven
principles for data management:

1) assets: Technical data are corporate assets that can give E&P a competitive
advantage. As assets, they should be re-used, shared, managed, and secured.

2) access: Technical data must be readily accessible, in a usable format to
authorized individuals.

3) ownership: Shared data are owned by a specific business unit and formally
supported.

4) capture and validation: Technical data are captured and validated at their
point of generation or acquisition to achieve highest quality. Continuing
responsibility for data quality lies with each individual user, working within
established data guidelines.

5) authorized versions: Each occurrence of data has a defined authorized
version.

6) data definition: Each shared technical data item has a unique definition.

7) data independence: Data are independent of applications.

As a result of the DATAMS team's recommendations, Mobil joined in
partnership with five other petrochemical companies to form POSC (Petroleum
Open Systems Corporation).

136

I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The mission of POSC is:

To develop and deliver an E&P industry-specific software integration platform
that will be the interface for petrotechnical applications, database management
systems, and workstations.

POSC's objectives are to establish E&P-specific open standards by developing:

an integrated E&P data model (that will include a meta-data facility),
a common E&P-oriented graphical user interface,
software offerings to facilitate E&P standards,
and compliance test suites.

Mobil E&P plans to use the POSC deliverables, especially the integrated E&P
data model.

WDB: POSC seem to be a very data centric architecture, what about process?

DR: The geological models developed by our petroscientists are considered to be of
such competitive advantage that these models are proprietary. In actuality, the
data is also considered proprietary, but the risk of drilling has become so large
that companies often partner to share that risk. Before agreeing to partner,
companies will often agree to share data they possess regarding a potential
drilling site. In order to exchange this data, an industry-specific data model is
required (i.e., POSC). In non-proprietary areas of the company, developing a
common set of industry processes would result in reduced system development
costs.

A. 1.2. Interview 1 Write-Up

POSC is a very data centric architecture developed to support the rapid

integration of data in new ways or under new views (a driving business need because

new views help find oil). In database terminology, new relational database schemes

must be rapidly developed to support the new views. To support the integration of new

database schemes, POSC will employ a meta-model that captures all of the entities,

relationship, and attributes of all geological data types to be used. The meta-model will

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

be produced in a top-down manner. By standardizing at a higher-level of abstraction

(meta-level), POSC will provide flexibility at a lower level of abstraction (the scheme

level). Standardization by itself may or may not be good—how and what you

standardize is important.

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A.2. Interview 2

EDS

February, 1995

M. S. - EDS

J. N. - EDS Research

A.2.1. Interview 2 Notes

MS: RightStep is a roadmap or plan for getting from where you are to where you
need to be. RightStep starts with a determination of business objectives - or
where the business needs to be (this step could include a BPR effort). Based
upon these objectives, a map of the different logical views of the enterprise is
developed. Using these views, the functionality and operability of individual
components is defined and the relationships between components identified.
Gap analysis is performed by comparing the desired enterprise structure to the
legacy enterprise structure. Based upon identified gaps, migration strategies for
infrastructure and applications are developed based upon established standards
and methodologies. The last step is deployment. For EDS, deployment
generally means wiring together all the applications (including the legacy
systems, because most of our works is done on already operating businesses -
very few green-field systems). No one step is any more or less important that
another step - what is important is the overall result produced by the process
and the speed within which we can delivery the solution. How quickly we need
to deliver a new solution depends on the specific industry.

RightStep in methodology and technology independent - which means that we
will undertake a project using any methodology and technology that a customer
desires. As systems have moved from a mainframe to a client/server
environment, the number of tools and environments that these tools must
operate in just exploded. We now have clients (i.e., front end windows build
using something like PowerBuilder) running in any number of environments
(OS2, Windows, DOS, UNIX on different pieces of hardware) that can talk
across the network to a server again running in any number of environments
that store both data and procedures (i.e., Remote Procedures accessed through
Remote Procedure Calls) written in "C" or some other language. The number
of interconnected software products that fit into this client/server approach is in

139

with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

the hundreds (see ComputerWorld's Client/Server Infrastructure Roadmap)
which means that the number of possible software combinations is in the ten of
thousands (this i s a n N (N - l) / 2 problem). So, integration is a major concern
for EDS from a technological stand point alone. RightStep must be able to
bridge across different generations of technology. Our enterprise modeling
efforts and our AI & 0 0 group, both based in Detroit (GM CIM
manufacturing), have the most experience with integration issues.

JN: EDS Enterprise Modeling Project (undertaken with General Motors) - The EDS
/GM Enterprise Modeling effort represents the largest enterprise modeling
effort EDS has ever undertaken. To our knowledge, this project is the largest
Enterprise Modeling project ever undertaken anywhere. The project was based
upon an EE (Information Engineering) approach that started with ER (entity-
relationship) data modeling. To build a top-down IE enterprise model, you
must specify all of the entities and all of the relationships within the enterprise.
The first problem one encounters is the fact that an enterprise modeling effort
within a major enterprise requires you to find thousands of entities and
thousands of relationships. Even if one can identify and uniquely name all of
these, the time required to complete a modeling effort of this size is years.
During that time, the enterprise is changing which means that your enterprise
model is trying to model a moving target - which really cannot be done. The
second problem with a unified enterprise model is that it dictates or imposes a
specific model on the whole enterprise. At any point in time, some individual
unit within the enterprise will be developing a new way of operating their
business. Invariably, this new way of operating will not be consistent with the
current enterprise model. There is no one unified model that fits all the possible
ways a business unit could operate and there is no way to anticipate all of these
ways either. An effective enterprise model must allow for flexible extension.
In analyzing why an specific enterprise model could not be extended to support
a new way of operating a business unit, we discovered that the relationships
between entities are what caused some of the problems.

JN: EDS Meta-Modeling Project - In response to the enterprise modeling project
problems, EDS research initiated a meta-modeling project to try to understand
how to capture meta-level information about the relationships between entities.
Every relationship has the potential of being a N:M relationship to different
types - but we generally choose to restrict the number of types for current
business reasons. Over time, the business restrictions change and we must
move from an 1:1 to an N:M set of relationships types. When you change the
relationship type from 1:1 to 1:N and then N:M you get a dynamic cascade
through the systems as other relationships are affected. The coordination issues
that these cascading changes impose on the system are significant. As an
example just think about what is happening in banking. Traditionally, banks

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

only offered customers two basic account types: an interest bearing saving
account and fee-based checking account. Today, you can choose from any
number of different types of different accounts. You can have an interest
bearing checking account with the fees waived if you keep a minimum balance
that is tied to your savings account for overdraft protection. Or you can have
all of that with the overdraft protection provided as a line-of-credit or as a loan.
Or just about any combination that you want. Now add to all this the idea that
the bank can now have different types of customers. Each time a new type of
account or customer is created, the rules that represent the relationship between
the entities customer and account change. For each type of account and each
type of customer, you have a different set of rules. Each specific view of the
new account type and new customer type (i.e., marketing, accounting, etc.) will
have a set of rules associated with it that the system must be able to integrate in
a consistent manner. To build a system that is flexible or extendible you must
be able to quickly integrate all of these issues in some consistent manner.

In this project, large grained objects where dynamically built by integrating
small grained objects, that contained both the data and process, together in a
federated manner (bottom-up). The idea was that the meta-modeling layer
would be able to resolve conflicts between small grained objects, so that they
could integrated into a consistent whole, by capturing rules in a bottom-up
manner (generalization). Unfortunately, we found that some rule conflicts could
not be resolved in an automated fashion given the level of sophistication of our
meta-level facility. We where never able to solve the integration problem.

A.2.2. Interview 2 Write-Up

Systems integration is a significant architectural problem for EDS’s clients.

Systems integration requires that both data and processing rules be flexibly integrated

into some consistent whole. Integration is one problem but the overall speed of the

integration process is also critical.

EDS’s experience with using a ubiquitous top-down standard (1 and only one

mapping) to achieve integration shows that ubiquitous standardization can solve the

integration problem but fails to provide other necessary capabilities required in today’s

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

business environment. Specifically, the size, speed, and flexibility of a system built

using a ubiquitous approach prove limiting in real world system.

EDS’s attempts to achieve dynamic integration using a bottom-up (or federated)

approach suffered from rule conflicts created as domain specific objects where

integrated into larger domain objects (an integration issue not a speed issue). Even if

these conflicts can be resolved, the number of mappings required under a pure

federated approach is very large N (N -1) / 2. To be able to respond to a dynamic

business environment the architecture’s C3 structure must be responsive to both driving

business needs and technological changes—the C3 structure must make the architecture

evergreen.

142

i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A.3. Interview 3

Anderson Consulting’s EIA Architecture

March, 1995

H. R. - Anderson Consulting

A.3.1. Interview 3 Notes

WDB: Why did Anderson Consulting develop EIA and what problems does it solves
for you or your clients?

HR: We see the trends towards user-driven systems, integration of the enterprise,
and the complexity and fragmentation of technology continuing through the
close of this decade. As our clients demand flexibility, cost efficiency,
compressed time-to-market, and open systems, we believe that these challenges
can be met through the use of a comprehensive enterprise architecture or blue
print that must define the connections and relationships of information systems
components that are used to deliver business results. The architecture should
specify what we should build not how—which means that an architecture is not
restricted to one implementation method or technology. Quite the contrary, an
architecture should help identify and guide the selection of an appropriate
methodology and technology that are necessary to deliver business results over
different generation of technologies and methodologies.

WDB: How does your architecture, EIA (Enterprise Information Architecture), help
you address the issues of integration, flexibility, and speed in delivering IS
solutions?

HR: The value of EIA is that it starts with a business driven approach that requires
that the business’ goals, policies, culture, and environment be identified,
integrated, and then linked to the architecture’s technology goals. Since EIA is
neither methodology-dependent nor technology-dependent, an EIA as defined
for a specific enterprise can be designed to support any business needs. As
goals, methods, and technology change, the defined EIA can be refined and
improved through evolution. The key to the whole EIA approach is to define
the linkages between architectural layers which causes technical decisions to be
based upon identified business dependencies and relationships. By defining the

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

architecture in a layered manner, changes in business requirements or
technology can be isolated within a layer and its linkages to adjacent layers.
The layer by layer encapsulation allows us to make changes with less impact on
the overall system. By using CASE tools to model each layer and mappings
across layers, we can gain increase speed - IE would represent an example that
includes a mapping from the business requirements layer to a data architecture
layer.

EIA is composed of seven distinct, yet related layers. They are:

environment
business requirements

data architecture
application architecture

infrastructure
system software

hardware/network

HR: These layers are interdependent; that is, a change to one layer can affect and
cause changes to any or all of the other layers. As a rule, a change in one layer
will usually have the greatest impact on the layers that are next to it. Again, the
key is to define the dependencies that exist between layers for a specific
architectural design.

WDB: What would be some examples of these dependencies?

HR: In the environment layer, external factors such as government regulations,
market competition, and customer expectations can have a major impact on
business requirements. Compressed time-to-market would represent one
competitive factor that many of our clients would consider a strategically
significant issue today-a business requirements layer issue. In a manufacturing
firm, compressed time-to-market almost always creates the need to tightly
couple the CAD (Computer Aided Design) system with the CAM (Computer
Aided Manufacturing) system to create a CIM (Computer Integrated
Manufacturing) system. Coupling these systems requires a common data model
and the appropriate choice of infrastructure—a data architecture layer issue.
Without identifying these dependencies and selecting technology aimed at
addressing these dependencies from a business perspective, the desired business
results will never be delivered.

144

*

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

f

A.3.2. Interview 3 Write-Up:

An architecture must be able to cope with change - both changing business

needs and changing technology (it must be evergreen). The architecture must be able

to integrate the business’s goals, policies, and culture (everything) into a consistent

whole and then map the linkages between these business drivers and technological

solutions (a mapping across two different domains). The use of a layered model for the

architecture (use of abstraction) allows for an isolation or encapsulation of “what” each

layer must provide from “how” it is provided. The encapsulation is useful in dealing

with change - because only the mapping across domains must change.

145

*

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A.4. Interview 4

Texas Instrument

April, 1995

J. M. - TI

T. D. -T I

J. B. - TI

A.4.1. Interview 4 Notes

WDB: Your CIM (Computer Integrated Manufacturing) application framework
represents the largest know 0 0 (object-oriented) framework in use today. In
your CIM application framework, you have focused on building a structure
(which you call a framework) that defines one layer in TTs EIF into which
plug-compatible reusable components can be plugged. Could you please
describe the framework and why it works?

JM: Our 0 0 framework provides a set of "standard services" that are defined
through a set of interfaces that call standard methods - much like the ANSI C
library. The standard service defines what the method must do - not how.
These services represent the relationships between components in the
framework. Each component provides a certain set of services. In any given
activation of the framework, the specific set of services and the order in which
the services are called can be different - but the basic set of standard services
remains unchanged. Since the framework captures the standard set of services
required for semiconductor manufacturing, we believe that the framework itself
is reusable - not only the standard services provided by a component. The
services and framework are reusable because they capture the invariant
relationships between components. The framework and services are both
reusable because they specify what must be done - not how.

WDB: So your standard services are define in a top-down manner but allowed to be
instantiated by each vendor?

JM: Yes. By specifying the standard service’s interfaces, we are specifying “what”
the service must provide but not “how” the service is provided.

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

WDB: By defining a single standard set of services (i.e., your framework) for the
manufacturing layer you have reduced the number of mappings from a possible
N (N + 1) /2 to N + 1 mappings at each layer.

JM: Right.

WDB: In your framework you have a planner and a scheduler, how can you make sure
that when you plug these two components into your 0 0 framework that they
interoperate in a consistent manner?

JM: Currently, we handle that issue of "application logic" by hand. To interoperate
consistently, the planner and scheduler must both use the same queuing
discipline. You can either push material through the fab or pull material
through the fab - but whichever discipline you choose both the planner and
scheduler must operate using the same discipline for the framework to operate
effectively.

WDB: What do you mean by “application logic”?

JM: The rules and the order in which the rules fire.

WDB: You have no automated mechanism in the framework for checking “application
logic” issues and the issue of “application logic” is not captured in the interface
is it?

JM: No, “application logic” is not captured in the interface and we do not have any
automated mechanism for checking it at this time.

WDB: What if the scheduler wanted to optimize through-put for the whole fab and the
planner wanted to optimize the productivity of individual machines?

JM: That situation would lead to sever problems with the overall operation of the
framework. Again, since we developed all of framework components
ourselves, we handled this issue in the component design phase.

WDB: So you if you wanted to change the “application logic” of your framework you
would need to select a different set of components?

JM: Yes and no. To change the queuing discipline of the scheduler and planner we
would need to select and new set of components - but to change the work-flow
within a* queuing discipline we would not because in any given activation of the
framework, the specific set of services and the order in which the services are
called can be different

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

WDB: So what happens when you want to purchase a framework component from a
outside vendor? How do you know if the component is plug compatible?

JM: By checking both the interfaces specifications and the “application logic.” In
the future, we hope that standards like the OMG’s (Object Management Group)
OMA (Object Management Architecture), which will include an number of
facilities like their Interface Definition Language (IDL), will evolve to the point
where any OMA compliant component will be plug compatible with any other
OMA component. T. D. is one of TI's designated representatives to the OMG.

WDB: Since the "application logic" is not captured in the IDL, how or where else
could you capture it?

JM: In our Enterprise Integration Framework (EIF) document which was written by
T. D., we have proposed that application logic be extracted from applications
and placed in a repository so we can establish the overall integrity of the of
enterprise model and instantiate the rules into domain specific contexts in a
consistent manner (working groups within the OMG are developing the
requirements for these type of repositories). As part of the EIF, we have
proposed building an virtual enterprise model that would include a virtual
comprehensive planning and scheduling application. The virtual planning and
scheduling application would be used to test the ability to selectively interchange
components. One of our next projects will be looking at building a business
rule framework.

WDB - So the purpose of building a comprehensive virtual enterprise model is to
provide a top-down logical model (i.e., abstract model) of how the organization
should be put together?

JM: I believe that a top-down enterprise model should be built to provide the
coordination needed to successfully build the correct lower level frameworks.
As we built the CIM application framework, we only worried about the
framework from the fab’s operating perspective. Because of this domain
specific view, our efforts to scale the framework to the enterprise level (across
domains in a bottom-up manner) have not been successful. Without a map of
where you are going, its hard to get there.

WDB: So without knowing what the issues are that you have to address at the
enterprise level, you might not build the lower level frameworks with that
capability?

JM: Yes.

148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

F

WDB: Your framework specification and documentation seem to be very process
centric. Is there a reason that data is not as important as process in your
framework?

JM: Because the framework is built to provide a set of "standard services" for a real
time manufacturing environment, the framework is more process centric. In an
real time manufacturing environment, the half-life of most process data is of a
very short duration and ends up being passed between procedures as parameters.

WDB: I would like to know more about how your EIF (Enterprise Integration
Framework) will promote rapid application development of user tailored system
solutions.

TD: The basic idea behind the EIF is to isolate application logic, data, and user
interface. By providing end users with repositories or reference libraries of
reusable industry-specific models, end users will be able to combine generic
"piece parts" with custom components to quickly construct a uniquely tailored
application system. Conformance with the EIF implies a number of capabilities.
Reuse of generic designs in one essential capability. The fastest application
development generally occurs when applications are created from preexisting
designs or building blocks. The key to reusable design is having an
environment that makes relevant designs easy to fine, easy to understand, easy
to modify, easy to integrate with other components, and easy to check the
integrity and consistency of modified/integrated components. Visual
programming tools that remove complex user interface code from application
logic allow application logic to be maintained, configured, and distributed
independent from technical implementations. As database technology and
visualization technology change over time, the impact of these changes will be
isolated due to the separation of these components. This independence will also
allow user interfaces to be optimized for unique work flow requirements domain
by domain. As a consequence, visualization technology will have to provide
tools that will be able to operate with radically different visual, syntactic, and
semantic characteristics across domains.

WDB: This interoperation across domains implies that the EIF integrates all the tools
and domains in some seamless fashion through a centralized repository. What
EIF interoperation standards or tools exist today?

TD: No complete standard exists today but a number of groups are working on
standards for interoperability like OMG's CORBA standard (Object
Management Group Common Object Request Broker Architecture) or ECMA's
PCTE (Portable Common Tool Environment) standard. As EIF compliant
components are developed, implementation choices will be made in
consideration of cost, performance, scalability, portability, training, quality,

149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

compatibility, and availability factors relevant to the target installation. Not all
EEF compliant tools will be created equal - which is why we are developing the
framework in the first place. By supporting plug compatibility, the EIF allows
the user to select individual components from a wide range of components based
upon the users specific criteria. Only when a users decides that the propriety
extension or even complete development of a specific component will provide a
strategic advantage should the user use anything but a generic component.

WDB: A number of people believe that reusable components represent the cornerstone
of the new plug-and-play systems architecture. Given your experience, what do
you think are the fundamental requirements for a component to be reusable?

JB: I not sure I have an answer for you but I can tell you about my experiences.
When we talk reuse, we generally also talk about empowering the end-users by
allowing them to tailor or extend these plug-and-play systems as they see fit.
When I look at our recent experiences in these areas, I worry that we (systems
people) are just really moving the reuse problem from the IT shop out to the
end-user. Look at our experiences with financial analysis using Lotus
spreadsheets. Before Lotus, financial analysis was a centralized and controlled
activity. A very small group of well trained people performed all of the
analysis and knew exactly what types of financial analysis where being done for
what parts of the organization. Then along comes Lotus - which I view as a
tool built of reusable low-level financial functions. If we had centralized Lotus
in the financial planning department, the limited number of financial analysis
would have been able to track what spreadsheets they had already built in
support of a specific type of analysis. Instead, we distributed Lotus throughout
the organization. Now everybody started doing their own financial analysis -
which resulted in duplication of effort everywhere which is completely contrary
to our reuse goals. Even worse, a lot of these spreadsheets contained serious
errors that lead to some unique problems. As the inconsistency between
individual spreadsheets surfaced, the organization felt that more control or
coordination between individual spreadsheet was necessary. To solve this
problem, we produced a standardized set of Lotus templates that performed
financial analyze (Lotus spreadsheets with menu driven selections) and then
required each department to use them for their individual financial analyze. The
problem with these templates was that we could not anticipate all of the specific
financial conditions that one could encounter. For a specific set of condition,
the assumptions used in developing a specific template where fine and within
those assumptions the templates worked fine. When a factor outside the defined
assumptions became important, the templates no longer applied. So end-users
rejected the templates in favor of building their own worksheets.

JB: Selecting Lotus as the organization's standard spreadsheet did promote reuse at
another level. See, when you talk about reuse you must realize that reuse can

150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

occur at ail levels in the organization and across all processes. Lotus provided
end-users with a single consistent look and feel for all our financial analysis
applications - which reuses end-users knowledge of how to either build or
navigate a Lotus based application. Using Windows as a front-end on all of
your applications would be another example of this idea.

WDB: Did you know why their where so many discrepancies between the individual
spreadsheets developed by different end-users?

JB: From what we know, there are really three issues that contributed to the
problem. The first issues has to do with the skill or experience level of the
spreadsheet user. A number of individuals were using Lotus functions without
truly understanding exactly how the financial function worked. The second
issue has to do with the data. When we connected the P.C. to the network, a lot
of people got access to databases and started using down-loaded data in their
spreadsheets. We discovered that a lot of people did not really understand the
meaning of the data that they were down-loading into their spreadsheets and
therefore used the data in ways that we not appropriate to this analysis. The
third problem we discovered is that most individuals building spreadsheets did
not understand the assumptions and limitations of the types of financial models
that the where using or how these assumptions and limitations where build into
spreadsheets in general.

A.4.2. Interview 4 Write-Up

TTs CIM (Computer Integrated Manufacturing) application framework was built

in response to TI’s need to reduce systems development lead times to 90 days from 18-

24 months (a driving business need). A layered architecture provides a number of

useful capabilities. Layering by levels of abstraction can support/allow for within

scope changes as you specialize layer by layer - the 0 0 model. A top-down

specification is required for interoperation across layers - but by specifying the

requirements of the lower layer (i.e., the “what” top-down) a bottom-up instantiation

of the “how” allows for integration with flexibility.

151

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Standardization by layer reduces the mapping problem from N (N + 1) / 2))

to (N + 1). Layering also provied for encapsulation by layer by splitting “what” the

layer must do and “how” the requirement is accompolished. By standardization of the

“what” not the “how” you allow individual’s vendors freedom in building solutions.

The standardization of the interfaces alone is not sufficient for specifying

interoperability. The architecture must integrate data, process, and rules/policies into a

consistent whole. The architecture must allow the integrated whole to be

tailored/modified by end-users to fit their specific needs - which is why the OO layered

approach. Allowing end-users to tailor/modify applications requires the architecture to

provide for a formal control mechanism for checking consistency of the integration.

How and what you reuse is important—a strict standard provides reuse but

without flexibility—we need reuse that allows extension-so we must reuse higher level

abstractions.

152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A.5. Interview 5

USAA

May, 1995

USAA IT Architecture Team: P. C., C. E., W. B., D. J.

A.5.1. Interview 5 Notes

PC: The architecture (USAA's Target IT Architecture) is patterned after a building
architecture. Specifically, USAA used a book titled "How Buildings Learn" as
a template for building an IT architecture. Using the approach found in this
book, USAA has identified six layers in its new IT architecture. These six
layers are labeled:

1) site,
2) skin,
3) structure,
4) services,
5) space plan,
6) and stuff.

In USAA's architecture:

site - corresponds to the site of a physical building in an electronic sense. Site
is comprised of USAA's external connectivity to the external electronic world.
USAA has identified 10 service activities that require external connectivity.

skin - corresponds to the outer layer of a physical building. In USAA's
architecture, skin provides an external IT appearance and provides receiving,
queuing, and security. USAA has identified 6 service activities that the
architecture must address in the skin layer.

structure - corresponds to the load-bearing components of a physical building.
Structure is comprised of operating systems, process control frameworks,
business object frameworks, and document frameworks. USAA believes that
this layer must be the most stable portion of the IT architecture because it
supports, surrounds, and holds together all of USAA's IT components.

153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

services - correspond to the electrical, pluming, heating and air conditioning,
and similar services provided throughout a physical building. Electronic
services exist to enable the sharing of IT components throughout the enterprise
which supports reuse and economy. Services layer components include an
integrated communication network, object communication middleware, and a set
of composite services embodied in "output.”

space plan - corresponds to the how the internal space in a building is divided
into offices and hallways and assigned to various departments. In our IT
architecture, the space plan corresponds to lines of business. Traditionally,
these lines of business where supported by a fixed space plan built of rigid
COBAL programs (or walls) that separated and hid the functionality of business
process automation. Just as commercial building have minimized this layer,
shifting to modular furniture and moveable partitions to enable responsive
change, our IT architecture must also minimize this layer by removing business
rules and business processes from business automation programs. Rules and
processes that are removed are placed in the structure, services, or stuff layers
in things like our business object frameworks or process control frameworks.
With rules and processes remove from this layer, the space plan layer must
ensure that messages, items, documents, phone calls, etc. get to the right
area/person for proper handling. Our space plan provides us with the
information necessary to route these electronic items. Routing does not
determine detailed work flow, that functionality is imbedded in the stuff layer.

stuff - corresponds to everything in your office that is not walls or furniture.
Stuff consists of all those things that are mobile and can be easily reconfigured
to accommodate business process change and personal preferences. Most of the
components in this layer have traditionally been imbedded in highly structured
and business-area-specific programs. In our architecture, the various functional
components of these traditional applications have to be extracted, modularized,
standardized, and placed on the end users' electronic desktop so these objects
can be easily accessed, modified, and executed by the business user. We must
extract presentation, data, rules, and process is we are going to support IT
components that can be placed/moved/configured/reconfigured by end-users.

The real goal of our architecture is to make everything stuff.

WDB: Can you tell me why USAA is developing a new IT architecture and what you
expect it to do for you?

PC: The reason USAA is developing a new IT architecture is because the business
processes and products that the systems group must support are going through
dramatic changes of their own. In general, the change is from supporting a

154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

predesigned or mass produced insurance product to supporting a tailored or
integrated mix-and-match approach to an insurance product. Take an auto
policy for example. In a standard auto policy today, the overall structure of the
policy, including the types of coverage and the relationship between parties, is
pre-defined. The only issue left for the customer and underwriting to decide is
the amount of coverage and the cost at which USAA will provide it. If a
customer does not want a specific type of coverage, then the customer is really
asking for $ 0.00 of coverage for that type of coverage. In the future, USAA
believes that customers will want to design their own tailor made coverage from
scratch. To support this mix-and-match approach, our IT architecture must be
able to support the production of a new one-of-a-kind insurance contract on a
customer by customer basis. The issue in producing a new contract is not being
able to cut and paste the appropriate paragraphs into the contract with some
super word processing program. The real issue is combining different type of
insurance coverage into one contract in a consistent manner. Each type of
insurance has it own set of rules and regulations mandated by outside regulatory
bodies. On top of these regulations, you have specific company policies
regarding underwriting that must be considered. Building an IT architecture
that captures the business rules that would allow an underwriter to combine
different types and levels of coverage in a consistent single contract is the real
challenge. To support this mix-and-match approach, the IT architecture uses
the idea of a "framework" - which captures the structural relationships between
components within a specific composite component. An example would be our
"Contract Business Framework" in the structure layer.

WDB: Section Vila opens by stating that while USAA's new IT architecture "must
support all the strategic business concepts expressed in Section V, the most
stringent and pervasive requirements of the IT architecture are flexibility
and economy" (USAA Target IT Architecture, Section Vila, pg. 1). Why is
flexibility so important?

DT: The flexibility requirement is necessary because we (USAA) believe that we
cannot specify a priori all of the possible insurance contracts that our customers
will want and therefore the best way to provide them. One of the basic
principles of our architecture is that the business user (either the customer or the
customer working with our representative) should decide what types of coverage
and the amounts of these coverage they desire. Because of this requirement, the
architecture should not force a specific work flow or coverage combination on a
business user a priori. In order to provide this flexibility, the architecture must
provide a way to delegate the authority that flexibility requires but still ensure
that a consistent insurance contract is produced both from a legal and business
perspective. Economy is also important because customers will not want to pay

155

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

any more than necessary for insurance. We hope to achieve economy through
reuse.

WDB: Your architecture uses frameworks to define the structural relationships between
the generic elements in things like a contract, a process, or an insurance policy.
Are these frameworks sufficient to capture all the dimensions that this
architecture must address?

CE: No. The biggest problem that this architecture faces is its inability to address
the issue of culture. Culture is the glue the binds all of USAA together. It
represents our shared values and USAA has a very well defined set of shared
values. These shared values define the way USAA views the world, how we
work together, how we solve problems, how we deal with conflict, and a whole
host of other similar issues - how USAA would work with a customer to build a
insurance contract. All IT systems exist within some organization. If the
culture of the organization is not compatible with the system design, the
organization will reject the system. The system must operate and enforce the
shared values of the organization. The architectural problem is not only
capturing and enforcing shared values but dealing with the fact that these shared
values are changing - in large part enabled by new information technology. So
the architecture must not only enforce the shared values but also enable the
organization to change them when necessary. Since we view USAA as an
adaptive learning organization, the IT architecture must be adaptive (or
adaptable) to support the organization. Specifically, this means the IT
architecture must support USAA's new business processes defined through our
business process reengineering efforts. Our new business process driven look is
in contrast to our traditional organizational structure that was based upon lines
of business like life, property and causality, etc. The big problem we are
having in building our new enterprise-wide IT architecture is getting people to
focus on the common elements across the enterprise rather than the specific
elements that make a specific insurance line unique. Because of this mind set,
people in this organization have traditionally not even wanted to share data
across lines of insurance. A lot of this mind set is based upon empire building,
but some of it is justified. When you have shared data, who becomes
responsible for its accuracy? You could say that "since nobody really owns the
shared data, nobody is responsible for the data" or you could say that "since
everyone owns the data, everyone is responsibility for it accuracy and use. ”
When you have shared data, everyone must also agree on its meaning and
resolving that issue across line of insurance creates another set of problems.

WDB: In your new IT architecture, what role does the architect play?

PC: We see an IT architect playing the roles of an zoning board and an building
inspector. The role of the zoning board is to set building codes as the building

156

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

f

inspector role is to ensure that the codes where followed during construction.
An IT architect would define or set the IT policies regarding specific
architectural components. Like specifying a specific object communication
middleware standard. When components are built or purchased from outside
vendors, the IT architect must ensure that connectivity to our prescribed
standards is enforced.

WDB: The document (USAA Target IT Architecture) that you gave us is labeled
"DRAFT.” What parts or layers of your architecture exist today?

PC: Things like external connectivity, receiving/queuing/security, operating
systems, network routing, and desktop presentation already exist. The parts
that do not yet exist but are critical are the frameworks and the object
communication middleware in the structure layer. These two parts represent the
reusable components and the mechanism for combining reusable components
together.

WDB: Do you know of anyone that is currently developing these reusable components
or the object communication middleware?

PC: IBM is developing an object-oriented insurance architecture based upon
reusable components. We are also working with Miles, Burke, and Associates
in developing a set of reusable components for financial applications. The
OMG (Object Management Group) is developing the CORBA (Common Object
Request Broker Architecture) standard for object communication middleware.
CORBA represents a communication standard that components developers will
use when building components. When we buy a CORBA compliant component
we know that they will be able to talk to other CORBA compliant components.
Robert Shelton is another person that we are aware of who is trying to develop
reusable components. Robert is the chair of OMG's BOMSIG (Business Object
Management Special Interest Group).

A.5.2. Interview 5 Write-Up

The architecture must integrate data, process, rules/policies into a consistent

whole in some dynamic manner-not one-size-fits-all approach. Dynamically

responding requires that you have a lot of degrees of freedom in your solution

approach—so try to maximize the number of degrees of freedom as you build the

157

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

overall structure. Dynamic integration allow for a customer driven approach to our

business - a business driven approach. Dynamic integration requires that the authority

to change things be delegated to end-users so changes can be made on a case by case

basis - but the C3 component of the architecture must be able to capture, check,

approve, and log these changes.

The architecture must integrate data, process, rules/policies by using the culture

or shared values of the organization - therefore the must capture these shared values.

The architecture must be able to deal with change by being adaptive-it must be

evergreen. The architecture must not only support flexibility but must enforce integrity

rules to ensure that the a change in one area impact another area is some adverse

manner.

158

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A..6. Interview 6

CSC

June, 1995

J. S. - CSC

A.6.1. Interview 6 Notes

WDB: PRISM (Partnership for Research in Information Systems Management) has
developed an architectural approach that you believe helps a company solve the
problems of rapidly changing technology and technologies that are incapable of
communicating with each other. Please tell me about this effort and how you
think your specific architecture can help solve these problems.

JS: We believe that the underlying problem of architecture is that there is no context
for making decisions about technology and its use from a business perspective.
Very few of the organizations that we have seen have any evaluative criteria or
structures in place for making architectural decisions. In trying to identify a
comprehensive structure for architectural decisions, we identified four different
types of architectures, and four different domains in which each type must be
applied. The most important type is the principles on which the architecture is
based. These principles embody the organization's philosophy of information
systems, and its objectives for technology and its management. The other types
are inventory — a simple structured listing of architectural elements; models or
diagrams of the desired architectural state; and standards for selecting and using
architectural elements. The elements to which architecture is applied are
infrastructure, applications, data, and the organization that supports it all.

A complete architecture involves an approach to all combinations of domains
and types. Some cells will be more important than others depending on the
organization. However, principles are the most important aspect of architecture
and drive all other types. They must be based on the technological values of the
organization in such areas as user autonomy, degree of risk acceptance, and the
overall role of information and information systems in the organization.
Principles should be relatively few in number, specific enough to drive
behavior, distinctive to the organization, and articulated rather than invented.
They should be stated by senior management and the role of IS in this process is
to assist in their articulation. Without a clear set of driving principles, an
architecture lacks a clear context for making decisions about technology and its
use from a business perspective.

159

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

I

WDB: What is the source of an organization's technology principles?

JS: The main determinant of architectural principles is the organization's technology
values, which are a set of underlying attitudes and perspectives that shape the
organization's fundamental approach to information systems. Values cut across
technology domains, and are even more long-lived than principles. Technology
values exist in all organizations, whether or not they are articulated as such.
The key to successful elucidation of principles is the discovery of these values,
as opposed to their invention. All technology principles can be constructed
from three primary areas value:

Orientation to risk: from aversion to tolerance
User autonomy: from low to high
Technology perspective: from cost displacement to strategic tool

However, values are not the sole determinant of principles. The organization's
business situation and condition, its market position, competitive environment,
and other elements of business strategy all impact technology values and
principles directly, and in turn therefore underlie the entire architectural
endeavor. A principle might specify, for example, that emphasis be placed on
applications which increase the organization strategic advantage. If short-term
business conditions force a reduction in system spending, systems with a
strategic orientation might be cut first as opposed to cost displacement systems.
Architectural principles must also be informed by, but are not determined by, an
assessment of the current state and future direction of technology.

WDB: Why do you think most architectural efforts have failed to solve the problems of
rapidly changing technology and technologies that are incapable of
communicating with each other?

JS: With the advent of powerful, affordable, and interconnected distributed
computing technologies coupled with the rapidly changing business
environment, the traditional technical and economic assumptions that guided the
actions of IS departments in the past are no longer valid. The resulting
uncertainty has created confusion and anxiety, and left organizations without a
way to evaluate choices in a straightforward and analytical way. The
fundamental problem is that we lack evaluative criteria and decision-making
mechanisms which can guide the development of systems and the choice* of
technologies.

Traditional evaluation techniques fail for a number of reasons:

applications and their requirements are not yet know,
160

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

future vendor offerings and developments are unknown,
evaluative criteria are unclear and undefined,
and often the alternatives being evaluated are sufficiently different in nature as
to be impossible to compare.

Architecture is not a formal solution to these problems, but rather a mechanism
for identifying and resolving conflicts and building consensus on technology
directions and strategies. What is needed is a set of long-term, consensual
criteria for evaluating and managing information technologies that will persist in
the face of change.

WDB: What are the types of decisions that an architecture must address?

JS: In our research, we have identified a number of issues that the architecture must
address in each of the domains.

Cross and inter-domain
cost sensitivity
time horizons
degree and extent of standardization
simplicity/complexity
generality/optimality
sharing
organizing theme

Infrastructure
extent of access
vendor stance
degree of interconnection

Data
ownership
responsibility or stewardship
location
access

Application
location of processing
extent of interfacing and integration demanded
responsibility for development and maintenance

Organization
focus of system responsibility
definition of roles

161

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

career paths

WDB: What are the functional requirements of an architecture given today's rapidly
changing technology and business environment?

JS: To be successful, an architecture should be able to:
avoid "re-inventing the wheel" by capturing the general principles of technology
decisions and management,
over time, move the technology toward increased compatibility, interconnection,
and integration, where appropriate,
enable growth, extension, and enhancement of the existing installed base,
create a consistent and coherent development environment,
and establish basic guidelines for conducting IS business.

A.6.2. Interview 6 Write-Up

The choices that the organization makes when building an IS architecture must

be driven by the organizations shared values or culture as well as the organization’s

market position, competitive environment, and other elements of its business strategy.

PRISM represents a formal approach for identifying these values.

162

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A.7. Interview 7

Apple

June, 1995

L. S. - Apple

A.7.1. Interview 7 Notes

WDB: What is VITAL and what problems do you think that it will solve for Apple?

LS: VITAL is our plan or blueprint that not only describes the various components
of an information system but also details how they all come together to achieve
the final objective. The first step of the VITAL taskforce was to define a set of
fundamental design points or architectural principles. After reviewing the
literature on business strategy and architectural frameworks, the task force
reached the following conclusions:

Flagship systems inherently shared much common data and contain substantial
dependencies for both information and process.

Current systems cannot be integrated nor can they be economically modified to
share information in a consistent manner.

The opportunity exists to identify and incorporate commonalties and
dependencies. However, the new architectural effort cannot impede progress on
current projects due to their urgency.

Therefore, a common denominator is needed among all developmental and data
center groups to provide a common set of design points, measurable principles,
and basic structures that enables sharability and integratability of new systems.

Based upon these initial conclusions, the taskforce resolved to define an
architecture to enable individually-constructed systems to be sharable,
integratable, independent of any specific vendor platform, and to leverage work
done by one project across many future developments.

WDB: How does VITAL identify and capture these common denominators?

163

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

LS: You need to understand that VITAL architecture is really a technical
architecture - which is only one of four architectural layers that the taskforce
identified. The top layer starts with a business architecture that defines how
you organize your business. The principles defined at this level drive the
systems architecture which defines how you synchronize your systems. Again
the principles at this level drive the technical architecture which defines how
you build your applications. The last layer is the product architecture which
defines what technologies you apply. So VITAL defines a common set of
functionality at the application level.

WDB: What architectural principles did the taskforce define at the business level?

LS: VITAL defines a single business architectural principle that basing systems on
business function rather than on organizations provides a stabilizing effect on
information systems, reduces redundancy, and supplies the flexibility for
organizational change.

WDB: So you start by defining a basic set of business functions or business processes
that exist at the business level and then drive that down through the other
layers?

LS: No. Traditionally, functionality was defined in a "top-down" sequential
approach. Today, the dynamic business environment precludes us from using a
methodical, step-wise regression through these layers. We cannot "freeze" the
business rules and business structure long enough to document them, much less
validate them across business boundaries, before we must react to new
environmental and organizational challenges.

Since the business architecture must be able to be adapted to new environments,
a complete definition of its functionality cannot defined a priori. Given the lack
of a complete "Business Architecture,” the question becomes how can the
technical architecture be designed?

The VITAL taskforce feels that the answer is to view the technical architecture
from the perspective of the knowledge worker. We began with the concept of
empowering the individual - which placed the individual at the beginning of the
architectural design process rather than an abstract concept called "the
business.” Using this perspective, we defined the requirement of the technical
architecture from both the individuals and organizations perspective.

We feel that the individual wants: maximum access to information, with a
minimum of intervention from IS, timely access to accurate information across
organizational and job boundaries,a single system image on the desktop,
regardless of how many individual systems are integrated/accessed, applications

164

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

that behave consistently across multi-vendor software and hardware, and
interoperability among software packages on the desktop.

We feel that the organization wants: consistently applied business rules and
assured security, maximum information sharability with minimal cost, ability to
achieve "virtual" systems integration across dissimilar hardware and software
platforms and applications, and the ability to handle dynamic growth and
change.

WDB: How does VITAL achieve all of this?

LS: The general concepts adopted by the VITAL taskforce for achieving these goals
where to:
design information systems from the desktop perspective,
construct applications from standardized components,
use standardized interfaces to reduce life cycle cost and leverage prior efforts,
and gain maximum flexibility in meeting business needs by reusable,
generalized modular components that are hardware independent.

Specifically, VITAL is built using a data warehouse that not only captures data
at its lowest or atomic level but also a meta-data facility for insuring the
accuracy, integrity, and compatibility of integrated solutions. The actual
integration takes place in the Desktop Integration component of the VITAL
architecture. Desktop Integration is itself made up of four components:
Information Navigator, Information Synthesis, Help and Assistance, and
Information Server Access.

WDB: So VITAL is really a client-server data warehouse based architecture in the
sense that the integration and sharing that takes place through VITAL is data
across processes not shared process?

VITAL is a data centric architecture that does not specifically address shared
process.

A.7.2. Interview 7 Write-Up

The term VITAL is formed from the first three letters of the platforms the

architecture supports (VAX, IBM, landem), as well identifying the charter of the

product (Architecture) and its intended area of impact (development Lifecycle). In

165

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

addition to the architectures objective, the VITAL architecture effort included DEC’s

DSTAR head architect.

The developers of VITAL understand that data, process, and rules are required

to build an information system. However, the rules and processing are the elements in

a new system implementations that must change. Therefore, VITAL is a data centric

architecture that attempts to integrate data only - through a data warehouse - leaving the

process and rules dimensions wide open or with the maximum number of degrees of

freedom.

166

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A.8. Interview 8

Microsoft

June, 1995

K. G. - Microsoft

A.8.1. Interview 8 Notes

WDB: Could you please explain what MSF (Microsoft Solution Frameworks) is and
what is does?

KG: We define MSF as a services based architectural approach which is loosely
refereed to as "client-server" by others. This approach is characterized by the
formation of industry/business partnerships to deliver building-block
components of business applications solutions. Specifically, a services based
approach is characterized by:

distributed data,
distributed processing,
interactive, GUI front-ends,
and heterogeneous platforms, tools, and solution components.

We see the client-server approach as the new model for enterprise business
systems. As business migrates toward this new model, there are as number of
complex issues that must be addressed.

These issues include:

strategic business planning and, possibly, re-engineering,
organizational infrastructure issues regarding how to roll out and operate
distributed, heterogeneous systems and how to support them,
enterprise information modeling, to ensure that data as a corporate resource is
managed and shared effectively across applications,
and applications development, from the systems development life cycle to
infrastructure considerations surrounding reusability and interoperability,
cooperative development, quality, and on-going improvement.

167

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

MSF provides a strategic planning framework for helping customers
development guidelines, methods, techniques, and tools to assist in this
migration process. It delivers an applications development discipline for client-
server applications. MSF reflects a ’toolkit' or ’template’ approach rather than
a methodology. The key to the leveraging MSF is to select the tools, methods,
and techniques that best fit an organization’s business strategy, technology
decisions, skill sets, and support structures.

WDB: What are the functional requirements or capabilities that MSF, or any similar
architecture, must possess to provide for the migration to client-server based
enterprise business systems?

LS: To provide a successful framework for migrating from legacy systems, an
architecture must possess:

extendibility - which means that the architecture must be able to be extended to
address new elements as they become important to the business,
tailorability - which means that the architecture must be able to be tailored to
the organization’s environment in terms of its methodologies, skill set, goals,
and technologies,
and customizability - which means that the architecture must be able to be
customized to specific end-users perspectives.

WDB: How do you intend to provide this functionality? or How do you intend to
implement client-serve based enterprise business systems?

From a business systems perspective we believe that you must:

move user interface and analysis services to the users while still retaining
control over corporate resources like data,
make it possible to rapidly develop a range of end-user applications that can be
customized to specific user profiles, by decoupling the user services front-end
from business processing and data,
encapsulate business objects for better control over application of business rules
to information access and decision making,
encapsulate business and application services to facilitate process distribution
and replication, component reusability, and implementation independence,
and preserve legacy systems in the migration process.

WDB: How do you achieve these objectives from a technology perspective?

LS: We think that there are a number of technological dimensions that are evolving
simultaneously that are required to support client-server based enterprise
business systems.

168

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

These would include:

evolving industry standards for achieving interoperability and connectivity
between clients and servers (such as ODBC),
increased use of the object-oriented paradigm for encapsulating services,
allowing applications to be built from a collection of reusable components from
a variety of sources,
technologies that take advantage of applications-as-services (like OLE),
movement of common application services into the operating system as core
shared services (like MS Windows NT),
and increasing support for distributed processing and data (such as Remote
Stored Procedures in SQL Server).

A.8.2. Interview 8 Write-Up

MSF represents an example of the current three tier client-server architecture (it

separates data, process, and presentation). MSF uses the 0 0 paradigm to provide

encapsulation (rules and processes are encapsulated within objects), reuse, and

extendibility.

169

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A.9. Interview 9

Open Engineering

July, 1995

R. S. - Open Engineering

A.9.1. Interview 9 Notes

WDB: You believe that a business object architecture is the only way to provide the
leverage, flexibility, and reduced time-to-market required in today's business
environment. What features of a business object architecture make it uniquely
capable of providing the leverage, flexibility, and reduced cycle-time?

RS: The difference between a business object architecture and previous approaches
to business modeling and systems design is that under previous approaches the
business models were static blueprints of business data and business function.
These static models were primarily useful for designing corporate-wide shared
databases. Using methods like Information Engineering (IE), their construction
was a long, involved process that took place in parallel with applications
development and ongoing business change. To have a significant impact, most
or all of the existing systems inventory had to be rewritten to use the "corporate
database.” After a two to three year business modeling effort, the added five-
plus years required to fully re-implement all business systems left several
fundamental problems: (1) the business usually changed enough during this time
to obsolete the original work, (2) businesses could afford neither the time nor
the money for this process, (3) and nothing in the approach or the underlying
technology made business or system change any easier to manage - we really
had a one-size-fits-all approach.

A business object architecture provides the ability to create business models out
of active representation of the business world, not just static data entities.
Instead of limiting business to sharing data only, a business object architecture
allows sharing of process, policy, and data. By defining the components of a
business object architecture using the concepts that business people work with
every day, the business object architecture is able to focus on the operation of
the business instead of a set of separate data and program modules.

170

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Let's take "customer" as an example. In an IE model, one would include a
corporate data entity for customer. On a separate hierarchical functional
decomposition model, one would find the business functions that use customer
data. One model would provide the "data picture" and the other an abstract and
arbitrary decomposition of what functions comprise the business. Nowhere
would a complete picture of a customer be developed. In a business object
architecture, a single component exists that represents all aspects of the business
concept "customer": what we know about it, what it does in the business
context, the rules that constrain its behavior, and the interactions and
relationships that it forms with other business objects.

Because the components of a business object architecture are active players, a
business object architecture provides a dynamic model of the business. Because
these components are designed to expose "what" services are provided and hide
or encapsulate "how" the service is implemented, components in a business
object architecture can be built and modified incrementally - which allows them
to be use to integrate and migrate parts of legacy systems and data structures by
wrapping existing legacy implementations. IE models typically cannot be
approached in piece-parts because representations of the business components
are split across separate modeling paradigms - network data models and
hierarchical function models.

By raising the level of abstraction to "what" services are provided instead of
"how" the services are implemented, components can designed that are re-used
providing leverage, compactness of design, and economies of scale. Consider
an example business object like "order.” Sales people call them "customer
orders.” Procurement staff know them as "purchase orders.” When defective
merchandise is returned, the receiving staff expect a "return materials
authorization.” All of them are actually orders. Only the two parties playing
the role of buyer and seller change. For a customer order, the a customer is the
buyer and the company is the seller. For a purchase order, the company is the
buyer and the vendor is the seller. In each case, the basic behavior of an order
is the same. Only minor differences exist for each specific type of order. By
providing a mechanism for abstracting and capturing the common behavior
along with the ability to tailor this behavior to a specific type of order, object
components can leverage the common business patterns found in every business.

WDB: What is the difference between a business object architecture and object oriented
systems development?

RS: The major difference is that a business object architecture is driven by business
factors. The business object architecture must define the business objects, the
business context in which they exist, the rules that constrain their behavior, and
the interactions and relationships between business objects from a business

171

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

perspective. Object oriented technology is a key enabler for building systems
that require encapsulation of implementation and selective refinement of generic
behavior (i.e., polymorphism), but object oriented development by itself does
not automatically provide you with plug compatible components. We consult
with a number of large organizations that have already "gone objects" in search
of such immortal values as reuse, flexibility, reduced cycle-time, and lower
costs. Many of these organizations have ended up with immense stockpiles of
custom-built code-level objects - which represent brand-new stovepipe systems
each built out of different objects by programmers that re-defined fundamental
business concepts within their stove-pipe perspective. What these organization
have done is develop systems with object technology without first thinking about
objects and how they should be used. It is the intelligent application of
technology that solves problems, not the technology itself.

A business object architecture allows us to focus our thinking on composing
business system solutions from collections of interacting objects rather than on
decomposing functionality into stovepipes. The architecture allows us a way to
package the policy and controls which determine the behavior of the composite
objects. In the client-server paradigm, the architecture provides the basis for a
middle "business logic" layer so the business logic is not embedded in the
presentation layer or the back-end database (as required by two-tier tools such
as PowerBuilder or Visual Basic). Without a "business logic" middle layer,
each individual developer can build front-end applications that re-define
fundamental business concepts within their stove-pipe perspective.

WDB: Since you believe that object oriented technology is only an enabler of a
business object architecture what are the functional requirements of an this
architecture independent of technology?

RS: The functional requirements of the architecture are that it:

be driven by the business vision,
capture the process, policy, and data for each business object consistently
integrated one place,
provide for abstraction and instantiation of domain concepts (like the order
example),
provide for piece-wise or incremental modification in order to support migration
from legacy and changing infrastructure technology,
and that it be focused on solution by composition rather than decomposition
which means that it must define the interactions and relationships between
business objects.

172

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A.9.2. Interview 9 Write-Up

An architecture must integrate data, process, and policy - which is why an OO

based architectures that provides integration by requiring data, process, and rules to be

combined in one place (i.e., inside an object) is useful. The architecture must allow us

to separate data, logic (i.e., rule, policy, processing), and presentation into distinct

dimensions so changes in one will not affect the others. The architecture must also

make use of abstraction because abstraction provides for reuse and also provides for

extendibility as more general relationships are specilized. The architecture must be

business driven.

173

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A. 10. Interview 10

OMG/X3H7

October, 1995

C. C. - DataAccess

J. S. - VMark

H. K. - AT&T

F. C. - EDS

O. S. - IBM

G. H. - SEMATECH

F. M. - GTE

A. 10.1. Interview 10 Notes

WDB: Why did SEMATECH develop the CIM application framework?

GH: SEMATECH became involved in developing the CIM application framework
because our member companies were experiencing a number of problems
managing their CIM systems using the current software lifecycle practices.

Specifically, our members identified a number of issues that included:

rising development costs,
a lack of interoperability and distributed integration,
limited extensibility,
data inconsistency and redundancy,
difficulty in changing and maintaining complex, monolithic legacy systems,
and a scarcity of global models for software engineering, maintenance, support,
and operations.

SEMATECH's analysis determined that all of these issues could be traced back
to our members companies usage of traditional lifecycle software development

174

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

practices that result in the deployment of monolithic legacy systems. We felt
that in order to successfully address all of these issues simultaneously, a new
software development lifecycle would need to be defined and implemented.
Since SEMATECH is not in the business of building software, SEMATECH felt
that its role in this effort should be to start by developing a new lifecycle
architecture. The new lifecycle architecture is founded on a number of
principles:

An architecture is a long-term roadmap: the effort needed to develop an
architecture can only be justified if this investment reduces development costs
for many projects. Therefore, an architecture must cover the long term by
taking into account future use of emerging technologies.

This requires two things:

that the architecture be inherently flexible,
and that a mechanism be put in place to revise it periodically as technology
evolves.

One architecture: in order to integrate the enterprise, a company must be able
to interconnect a broad range of systems. Systems that are interconnected must
share one overall architecture.

Develop specifications, not products: architectures that define sets of detailed
standards (i.e., TCP/IP or SNA) become obsolete and cannot evolve. If an
architecture is properly designed, multiple products can coexist within the
architecture as long as they meet the same architectural specification.

Understand, Simplify, and Automate: a successful architecture should
maximize the systems' responsiveness to business needs. It should not be
purely technology-driven. On the other hand, it should not consist of blindly
automating the current manual procedures. Therefore, a business must first
understand the problem by determining what issues are really symptoms and
which are really causes by surfacing underlying assumptions. Given a complete
understanding of the problem, a business must simplify by elimination of non
value-adding steps. In the simplify phase, the business must determine what
organizational changes can be effected to improve the business process,
regardless of whether this is a manual or automated process. In the automate
phase, the organizational changes identified in the simplify phase are evaluated
to see which changes should be automated.

Systems = Development + Execution: this principle says that the architecture
should allow, but not require, the development and execution environments to
use the same technologies.

175

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Adopt applicable standards: obedience to applicable standards allows multiple
applications to interoperate.

Include legacy applications through evolution not revolution: in order to be
accepted, most architectures must include support for migration from existing
systems, rather than having to throw them away completely to introduce new
capabilities.

Work through partnerships and consortia: the architecture will be more
successful, and the risk inherent in any change will be lower, if the architecture
is adopted and pursued in concert by all elements of the extended enterprise.
By developing a consensus on the definition of what areas are open to
cooperation and those that must remain closed in each organization’s
competitive domain, a better understanding of the requirements of your
architecture will evolve.

Empower the users - aim for model driven systems: a successful architecture
must reduce the gap between the users' understanding of their activity and the
way in which applications that support or automate this activity are described.
Model driven computing with feedback is the key to empowering end users.
End users should work directly with models that are reflect the business domain
not the artifacts of the models of the business domain translated into some
technological model.

WDB: Based upon your experience with the CIM application framework are any of
these principles any more important that any of the others?

GH: Not really, they are all important to success, but we did identify four critical
success factors in developing the framework.

reuse: is often falsely seen as dealing principally with code. In reality,
software specification and designs must become reusable if reduced cycle-time
and reduced costs are going to achieved.

tractability: both in terms of technological decisions made based upon driving
business needs and also relationships that are established between artifacts
produced because of different methodologies or technologies being integrated
under the architecture. Systems people are always failing to capture analysis
and design assumptions and when integrated systems evolve over time the
missing knowledge always proves troublesome at best.

176

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

process integration: we must consider the entire software development process
to decide how to best execute each task, instead of selecting each component
independently. Integration must address the compatibility between everything.

continuous improvement: both business needs and technology are going to
evolve over time. If the architecture cannot address this evolution through
rapid, incremental continuous improvement, systems built using the architecture
will not support the business.

WDB: The Object Management Group's (OMG) stated mission is to establish an
architecture, based on available technology, to enable distributed integrated
applications - or what most of us call plug-and-play. What does the OMG's
architecture look like and what are the underlying principles that it is built upon
that are going to provide us with plug-and-play?

CC: The Object Management Architecture (OMA) consists of three groups of
heterogeneous objects interconnected by a Object Request Broker (ORB). The
three groups are CORBAservices (Common Object Request Broker Architecture
services), CORBAfacilities, and application objects. CORBAservices are
defined by OMG as low-level application support functions. OMG has a
specified set of fifteen services that include services like: naming, persistence,
event notification, concurrency control, and access control. CORBAfacilities
are defined as higher-level object services that reside between CORBAservices
and application objects. CORBAfacilities include user interface facilities,
information management facilities, systems management facilities, and task
management facilities. Application objects are course grained objects that exist
in the execution environment. The ORB provides location-independent
connections between objects.

The basic idea behind the OMA is to provide an architecture that allows us to
build systems from plug-compatible components. Specifically, interoperable,
reusable plug-compatible components. Increased flexibility, reduced cycle-time,
and lower costs are all dependent on reusability. To support plug-compatible
reuse, a business component must be encapsulated in two directions. The
external world must not know anything about component internals, and the
internals must not know anything about external components, other than
allowing interested components to register for notification of specific events or
exception conditions. The principles behind the OMA are:

interoperability: application components developed independently, with
different tools, operating systems, standards, and requirements should be able to
interoperate at a business semantics level without undue requirements for
integration of technology.

177

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

flexibility, adaptability, and extensibility: applications should be able to be
produced and changed rapidly so as to reflect changing business requirements.
Existing components, whether internally of externally developed, should be able
to be integrated into existing systems.

scaleability: application components should be adaptable to different
engineering tradeoffs so as to allow the information system to scale without
changing the business or application model.

and reusability.

The OMA is an open standard, which means that is specifies the basic or
minimum set of services that are required to be plug-compatible. Interfaces and
capabilities can be added as required based upon the business's needs.

WDB: Why is encapsulation so important to reuse?

CC: Encapsulation allows the developer to limit the effects of implementation issues
to the internal world of the object. By encapsulating how methods are
implemented, objects in the external world do not have to know anything about
the internal world of an object with which they wish to communicate. The only
requirement for communication is the specification of a well defined
communication interface between objects. The OMG provides this
communication interface through IDL (the OMG's - Interface Definition
Language).

WDB: You said that the OMG’s architecture is built upon three groups of object. The
third group that you mentioned was application objects. What is an
"application" or “application object” in the OMG world?

CC: In the OMG, "applications" are defined as collections of
interworking/cooperating objects that together provides some user functionality-
-as opposed to the idea of a traditional monolithic procedural application. This
idea of an ensemble of collaborating object is a very dynamic notion. In the
new world of distributed objects, objects can be shared between applications and
which objects actually participate in an application can and may be determined
at runtime.

To build an application, application objects must connect a set of service points
(i.e., OMG interfaces) together to provide some user functionality. The OMG
defines these service points but not “how” they are used to build any specific
application - and this is where the OMG’s and BOMSIG’s (the OMG’s Business
Object Modeling Special Interest Group) views differ significantly. The OMG
takes a service-up view (based upon their defined services) whereas BOMSIG

178

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

takes a model-down view (based upon their application centric view of the
world) and the interplay between these two views is not yet clear.

Some people, like SEMATECH, are trying to build frameworks - reusable
patterns or templates - that provide a structure into which the service points can
be plugged into. The idea behind a framework is that the framework calls the
users code which is the exact inverse of traditional systems where the user calls
the system code. Perhaps these frameworks represent the transition between the
services-up vs. model down-down. In the case of 0 0 frameworks, a framework
represents a set of classes - with generic behavior - that the developer is
expected to subclass in order to provide specific implementations - hence the
idea of the system calling the users code which is programming by difference
and should be only 20 % or so of any given application.

JS: I strongly agree with the OMG’s principles of flexibility, adaptability, and
extensibility as well as the idea of reuse but think that subclassing framework
classes to build an implementation will result in a situation where your
application will break when you upgrade the framework. Because you cannot
transparently upgrade a subclassed framework, I don’t believe that inheritance is
the appropriate reuse mechanism in this case. I think that delegation should be
the reuse mechanism of choice and that we should be talking about ensembles of
interaction objects built using delegation rather than the ides of frameworks built
using inheritance.

HK: As systems people, it is the collective behavior or composition of a set of
objects that is of interest. In order to quickly built new compositions or revise
old ones, the business rules that define the composition’s behavior must be able
to be respecified and applied to the composite set of objects. If we embed
Business rule in methods inside objects, then we will bind the business rules to
the object in such a manner that we preclude respecification of the current
binding when we need to create new compositions.

FM: In our experience at GTE, a software architecture built upon the idea of
inheritance of methods or business rules creates a large number of unanswered
problems when one considers the issue of legacy system integration. None of
our legacy systems are 0 0 based implementations. However, I think that there
are really two issues here that need to be distinguished. We need to distinguish
between separation of re-usable “stuff” like Business rules and the
implementation of the separation and necessary re-combination.

Separating rules from business objects is really a design issue - as in design for
reuse methodologies - and this should make sense independently of how it is
implemented. The ideas of refication and reflection are mechanisms that can be
used to combine separate re-usable components in a variety of contexts. We

179

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

believe that reflection could be used in the underlying object model to provide
such inclusion of rules in legacy components or any components that may not
have been designed to reference such rules, but should.

CC: That distinction is very important. Inheritance, delegation, rule binding and
such are all implementation issues. From the point of view of the business user,
business objects are objects that must respond appropriately if ANY business
rule is broken ANYWHERE as a result of ANY action on a specific business
object. So from the point of view of a business user of an object, the rules are
absolutely encapsulated by the object. From a development point of view, is it
far better that each rule be expressed exactly once, which implies a system of
collaborating objects rather than having each and every object have the rule
embedded within it.

Likewise, subclassing - not subtyping - is an implementation issue. I think that
there is little doubt that an order is a subtype of some base business object. The
implementation system may or may not use subclassing to create the object - the
order could be in RPG. I am quite comfortable with a the idea of building a
framework of subtypes to represent business objects. From an implementation
perspective, I can live with or without subclassing. Again, I am not sure how
we bridge between the model-down view that would use types and the services-
up view of the OMG that uses classes.

FC: While I agree that it is probably useful to centralize the behavior of rule
processing either through inheritance or delegation, objects should be reflexive
with regards to rules - that is - I should be able to ask an object about which
rules it supports, tell an object to add a new rule, tell an object to change an
existing rule, etc. My experience has taught me that you should always
challenge a design which centralizes some behavioral aspect because centralized
behavior and states represents a design pattern which I’ve found carries much
undesirable maintenance baggage itself.

CC: Another very important distinction that must be made clear in the architecture is
the relationship between what will be modeled and/or built and any architectural
infrastructure that will execute/or-be-used-by what is built. Again, this
represents the bridging issue. Just as application objects must connect a set of
service points (i.e., OMG interfaces) together to provide some user
functionality, Business Processes will be needed to connect together Business
Objects to achieve some behavior. While not entirely different from a single
service of a business object delegating responsibility, the idea of a business
process is so important to a business that we must provide business users a way
to look at the system from this perspective.

180

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

From the business users perspective, it is meaningful to focus on process as the
driver of the business and business objects as the driven portion of the business.
From a programming perspective, processes have state and multiple
instantiations; therefore, they are objects - not simply a method on some object -
since methods do not have state. I really do think that there is a difference
between a customer or order and the product development or order fulfillment
processes.

In one sense, processes (like order fulfillment) span objects and are not really
owned by one particular object - which means that business behavior (a set of
operations) does not have to belong to a specific object in most cases - which
gets us back to the idea of collective behavior. If several objects interact then
this interaction is jointly owned by the participating objects. Therefore, an
architecture must have some mechanism for combining objects into ensembles
of well behaved interaction objects - whether this mechanism is centralized or
decentralized.

FC: I think that C. C. raises a very good point regarding collective behaviors - but
there is another issue that I feel we really have not addressed yet which is
multiple views. Not only will we have multiple objects interacting as an
ensemble but we must also realize that each ensemble’s as well as each object’s
behavior will represent an integration of a number of different views all of
which must be consistently and simultaneously supported or enforced.

In our experience with legacy systems, we have found that a change in just one
of these views or perspectives can invalidate the overall system’s design - 1
mean just consider the impact that changes from external regulatory agencies
have had on our business systems. So I think that we must figure out how to
built-in a capability for integrating change into a system’s overall design.

WDB: Isn’t this idea of constant regeneration of the system really what the use of
CASE tools is all about? I mean, in theory, we could have one really big model
of the organization in some CASE tool and every time we needed to change
some aspect of the system we could just regenerate the whole system?

FC: I am not sure how to answer that question. In theory, maybe. If in theory you
are correct, then what the current software crisis means is that we just haven’t
built big enough CASE tools yet - and I don’t think that bigger CASE tools
alone will solve the problem. At least in our experience with Information
Engineering (IE) based approaches, project size is only one aspect of problem.
Project complexity and IE’s top-down (unified) approach to systems design
often prove to be equally troubling aspects of the problem. Even in a
completely static environment, there are just to many entities, relationships, and
attributes in any large organization to get a single agreed-upon name and

181

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

meaning for all possible users and in a dynamic environment these problems are
just compounded.

Of course the 0 0 world believes that we can encapsulate things and therefore
limit the effects of changes - which brings us back to this issue of embedding
business rule in objects.

OS: I would like to comment on this idea of constant regeneration of the whole
system. I do not think that constant regeneration of the whole system is really
the only issue. I think that part of the issue is that we want to be able to allow
our systems to be extended or tailored by end users as they see fit - and I see
this issue as different from the idea that we want to be able to incrementally and
very rapidly change small parts of the system as compared to the regeneration of
the whole thing.

Regeneration of the whole system seems to be suggest a legacy type approach to
systems design and implementation where we build a highly structured or
centralized system. One reason for going to 0 0 based systems, it seems, would
be the ability to have distributed 0 0 systems where the objects have
decentralized behaviors. As method or rules are either inherited or delegated to
objects, local business units can specialize or overwrite these rules or method as
they see necessary within their preview. Of course one would need to provide
the necessary mechanisms for granting and checking permissions and logging
actual changes. But that issue is secondary to the point that flexibility and
extensibility are required in today’s business systems which I think is a different
issue than complete system regeneration.

A. 10.2. Interview 10 Write-Up

SEMTECH’s and the OMG’s architecture are, in fact, built to provide plug-

and-play capabilities. The OMG’s architecture (i.e., the OMA) is built using a layered

approach. SEMATECH’s architecture (just like TI’s) really represents only one layer.

The architecture must provide flexibility, adaptability, and extensibility by managing

the integration of changing business rules that define the application’s behavior. In a

layered approach, subclassing across layers will result in a situation where your

application will break when higher layers are redefined. Instead, delegation or

182

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

dynamic typing must be used in order to provide flexibility, adaptability, and

extensibility - some method that provides a mapping across layers. Within a layer (a

horizontal slice), multiple views (a vertical slice) will exist. These multiple

perspectives (vertical slices) must all be consistently and simultaneously integrated

within the layer in which they exist in order to achieve interoperability.

183

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A. 11-Interview 11

OMG/X3H7

January, 1996

F. M. - GTE

M. B. - GTE

T. D. - TI

H. K. - KM

R. H. - IBM

A. 11.1. Interview 11 Notes

WDB: What do you think about the idea of a layered architecture?

TD: We strongly agree with the idea of a layered architecture because we think that
it is necessary to encapsulate or hide some the complexities at each level from
the level above. Yet our experience with trying to scale-up our manufacturing
framework to the enterprise level suggest that a bottom-up approach may have
as many problems as F. C. described with their a rigid top-down approach. We
found that concepts existed at the enterprise level that we failed to account for at
the manufacturing framework level and that specific viewpoints existed at the
enterprise level that we had already hardwired into the manufacturing
framework precluding the representation of other viewpoints.

FM: Even when you decompose the problem top-down in order to provide level by
level encapsulation, you often discover that certain concepts that exist at lower
levels of the decomposition also require representation at the higher levels. In a
telephone company, the concept of a “dial tone” really exists at the switching
software/hardware level. Yet, in every telephone company that exist today, the
concept of a “dial tone” is used at every level of the organization including the
highest business levels. What I am trying to say is that some concepts exist at
multiple levels or that some concepts can not be encapsulated within a level
because they leak across levels, (leakage’s across levels)

184

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

I

HK: First of all, I like the idea of the use of abstraction - which is the reason that
you would have a layered architecture. Since each layer is going to represent a
different domain (business domain, technology domain, etc.), I think that you
will also need to have multiple layers of detail within each domain layer.
Secondly, I think that when one talks about mapping concepts at one layer of the
architecture to another layer of the architecture that one should realize that one
is really talking about the idea of mapping concepts between domains.

In mapping concepts between domains, there are a number of possible cases that
arise that in general include 1) a concept exists in one domain that does not exist
in the other domain, 2) the concept exist in both domains, and 3) the concepts
exists in one domain and only partially in the other domain. Of course if a
concept exist in one domain but not the other, then there is no mapping that one
can make between domains. If the concept exist in both domains, then the
mapping should exist. If the concept exists in one domain but only partially in
the other domain, then a partial mapping should exist.

Now, when mapping between domains, one is always constrained by the
concepts that exist within each domain. As a example, consider the idea of a
variable in a problem domain, a programming language domain, and the
hardware domain. In the problem domain, the variable will represent an
instance of a specific domain (or type) like a customer number. In the
p r o g r a m m i n g language, the variable might be mapped onto the concept of a
numeric, alpha-numeric, or a string and at the machine level the concept of a bit
pattern, byte, or word.

In building mappings across the domains, designers must be aware of the
specific requirements and limitations within each domain. In the customer
number example, the mapping between the programming language and the
machine level will be constrained by the word size of the processor - customer
numbers (if carried as integers) cannot be larger than the machine’s word size
will allow - which means that the machine’s word size does, in fact, leak across
the boundary between the two layers or domains (word size cannot be
encapsulated). Likewise, any business requirements that constrains the definition
of a valid customer number or the operations on or with a customer number
may have to be enforced by writing addition programming language statements.

In other words, the domain specific concept of a customer number defines not
only a data type but also all the valid operations on or with a customer number
(the idea of a abstract data type or an object if you like). Likewise, the domain
specific concept of a integer defines not only a data type but also the valid
operations on or with an integer. In mapping between the two domains, both
the data type and the valid operations on these types must be mapped.

185

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Now, one way to specify the valid operations is to specify the pre-conditions,
post-conditions, and the operation’s invarinats (or what aspect of the concept
remains unchanged by the operation) for each valid operation. In order to map
the pre-condition, post-condition, and operation’s invariant for each valid
operation across domains - say from a business domain to a programming
language domain, a designer must utilize the concepts within the p r o g r a m m i n g

language domain to build a composition (the abstract data type or object) that
provides the set of emergent properties that meet the business level pre
conditions, post-conditions, and operation invariants. In building this
composition, the business domain pre-conditions, post-condition, and operations
invariants will represent constraints that the programming language domain
must respect - which means that concepts within the business domain - just like
concepts at the machine level - migrate across domains as constraints. In other
words, migration goes both ways across domains - and, in some cases, can span
multiple domain mappings - which means that in those cases the concept cannot
be encapsulated.

Transactions represent the classic example of this mapping issue. A business
transition, say an accounting transaction, is specified within the business domain
by specifying the accounting transaction’s operation invariant - which at a
minimum is that BOTH the debit and credit side of the transaction must be
recorded simultaneously. However, in the machine level domain, the
simultaneous writing of BOTH the debit and credit to two different files is
virtually impossible. So to provide a mechanism for enforcing the business
domain invariant, software systems - the layer between the business domain and
the machine domain - must have specific additional mechanisms built into them
to support the idea of a transaction - which, of course, is why database systems
have features like commit, rollback, transaction logging, recovery, etc.

Now, there are a couple of important points that one should understand about
mappings and invariants. First, since invariants are defined within one domain
and mapped onto another domain, these mapping may not be one-to-one
mappings - which means that any specific mapping could result in a situation
where multiple inheritance or multiple delegation is encountered. Second, since
invariants are defined in one domain, enforcement of the invariant must be
viewed from that domain - which means that at a different level of abstraction,
or within a different domain, the invariant may be violated.

WDB: In your example, you used the idea of a business invariant, specifically an
accounting invariant. Couldn’t other groups within the business domain, like
marketing or engineering, have rules or views that created their own invariants?

HK: Yes, absolutely. In fact, each viewpoint in a domain can have its own unique
set of invariants. Which means that a systems designer must really integrate

186

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

both a horizontal and a vertical set of invariants into a consistent whole.
However, the invariants representing different viewpoints can, in fact, not be
integrated into a consistent whole. When a designer is faced with integrating
different viewpoints, each with its own invariant, specified by some predicate,
then the integration of all of the viewpoints requires the conjunction of the
properties of each of the different viewpoints. If the conjunction is false, then
the two viewpoints cannot exist simultaneously. In such a case, management
must provide a partial ordering of which viewpoint takes priority over the other
for specific cases.

MB: I would like to comment on the issue of mapping between domains. I strongly
agree with H. K .’s statement that when we map across domains we are really
developing mappings between two concepts. In order to develop these
mappings, one must understand the concepts at both a syntactic and semantic
level. In fact, multiple semantic levels. As an example, consider translating a
document in English to French. To achieve an accurate translation, one is
really interested in mapping the concepts in the English version of the document
into concepts in the French version of the document as compared to a word-by-
word substitution across versions.

To achieve an accurate concept to concept mapping, each word - a first semantic
level, each sentence - a second semantic level, each paragraph - a third semantic
level, and the whole document - a fourth semantic level must be utilized to help
establish the semantic invariant for each lower level.

In terms of a bottom-up vs. a top-down approach, I would agree that neither
approach will work my itself. First of all, a purely federated approach will not
work because of the semantic impedance introduced by both missing and partial
concept representations across domains. Even with complete concept
representations, the number of mappings between domains under a purely
federated approach increases a s N (N - l) / 2 where N is the number of
concepts. This means that the number of mappings increases as N2 which
renders a purely federated approach impractical for any size mapping.
Likewise, a purely top-down approach suffers from over specification which
introduces rigidity and hence inflexibility in addition to the practical limitations
of specifying tens of thousands of items within most major organizations.

Instead, I think a hybrid approach is needed where one uses a top-down
approach to define the overall structure while allowing for a bottom-up or local
instantiation of the structure. By defining invariants at a sufficiently high level
of abstraction, a top-down approach should provide enough structure to
overcome semantic impedance without introducing rigidity. Even something as
simple a defining a single standard set of concepts using a top-down approach
reduces the mapping problem to N + 1 mapping.

187

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

WDB: How close do you think that the OMG’s architecture is to this hybrid type
architecture or what would need to be change about it?

RH: Maybe I should answer that question, because part of my job has been to
develop a formal evaluation of the OMG’s architecture for IBM. Because the
OMG is developing a standard set of interfaces, one might think that they are
moving towards a N + 1 mapping idea as opposed t o N (N + l) / 2 mapping.
However, our formal analysis of the OMG’s architecture reveals that DDL (their
standard interface definition language) represents, at best, a syntactic standard
for interchange - and an incomplete syntactic standard at that. They have not
addressed the semantic issue at all. Therefore, we feel that IDL is not a
sufficient standard for developing the required mapping for interoperation across
domains.

A. 11.2. Interview 11 Write-Up

Viewed as a mapping across layers in a layered architecture, both the top-down

and the bottom-up approaches suffer from problems. The bottom-up approach fails to

identify higher level concepts that are important as we move up layers of abstraction.

Because of this failure, higher level concepts are not open for binding when the

mapping between layers takes place. The top-down approach often fails because

designers specify one binding for all cases precluding flexibility - the difference here is

one of subtyping versus subclassing in the 0 0 world.

The ability to map between views or domains requires that one establish an

operation invariant - a statement of what variables are bound and will not change over a

specified time. Within a layer, each view can have it own invariant or set of

invariants. Before one can map across layers, these multiple perspectives must all be

consistently and simultaneously integrated within the layer in which they exist. If

viewpoints are not consistent, partial ordering or specification of how to implement the

188

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

viewpoints will be required. In mapping across layers, an invariant at one layer of

abstraction may be temporarily violated during the operation execution but restored

before the operation is completed.

A mapping between layers is really a mapping between concepts. In order to

accurately map one concept onto another concept, both a semantic and syntactic

understanding of the concept is required - or stated in terms of invariants - you need to

establish both a semantic and syntactic invariant to successfully map concepts. IDL

interfaces are not sufficient achieving interoperability because the do have a mechanism

for expressing semantic requirements.

189

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A. 12. Interview 12

OMG/X3H7

May, 1996

H. K. - IBM

J. M. - MCI

F. C. - EDS

G. H. - SEMATECH

A. 12.1. Interview 12 Notes

WDB: I would like to get some more comments on what would be required to have a
complete plug-and-play architecture. Specifically, I would like to review what
we have talked about already and see if there are any new ideas or comments
that anyone would like to make.

HK: In general, I think that what you have presented is fine. However, I have some
questions regarding extensibility and flexibility. In the object model, lower
levels of abstraction are allowed to specialize a concept that already exists at a
higher level of abstraction. The lower levels are not allowed to introduce new
concepts that are not present at a higher level. Which suggests that the object
model can only provide flexibility with the predefined set of concepts that
already exist. To extend the object model to provide anything else would
require a redesign of the classes with the model. Therefore, flexibility is a
concept that should be defined as adaptability within the scope of the invariants
and extensibility should be defined as adaptability across the scope of the
invariants.

JM: The idea that components must establish invariants a long common dimensions
to achieve interoperability is very interesting. In the telecommunication
industry, we have a problem called feature interaction that results when two
features interfear which each other operation. As an example, consider what
happens when you have both call waiting and call forwarding on your telephone
line.

190

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Here is the problem:

The call waiting feature is programmed to look at your phone line and
determine if it is in use. The programming uses a simple rule that says if the
line is in use place the call in waiting.

Likewise, the call forward feature is programmed to take any incoming calls and
forward them. The programming uses a simple rule that states that if you
receive a call for a forwarded number, forward that call to the specified
number.

Now, consider that you are making a outgoing call and someone tries to call
you, should that call be forwarded, placed in waiting?

Lets look at the possible outcomes.

1) the call forwarding feature is always executed first when activated. The
inbound call is forwarded.
2) the call waiting feature is always executed first. In this case, the line is busy
so the call is placed in waiting.

Now consider that situation where you line is free. Let look at the possible
outcomes.

1) the call forwarding feature is always executed first when activated. The
inbound call is forwarded.
2) the call waiting feature is always executed first. In this case, the line is free
so the call is forwarded.

As you can see, the behavior or the systems depends on the interaction of the
two features based upon the partial ordering that are selected for their
application. It seems that this idea of dimensions could be expanded and used to
look at the idea of features and feature interactions because I think that we will
have the same type of feature interaction problems when we plug together
software components.

FC: I like the inclusion of multiple view within each layer. I think that this
represent a major contribution to the architecture. The way the rules flow into
each of the objects with the local resolution of all views really makes the whole
thing very dynamic. I think that the major issues here is how to identify
inconsistencies and then resolve them.

191

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

GH: I am not sure that I understand what your architecture means in terms of
building frameworks. Based upon my understand of SEMATECH’s
framework, some of the requirement of your architecture are inconsistent with
what we have been doing.

HK: I would like to add one or two things to you list of requirements. When an
operations is specified, you must also specify its pre-conditions, post-conditions,
premissions, prohibition, and obligations besides it operation invariants.

A. 12.2. Interview 12 Write-Up

The idea of extensibility shuold be viewed as both a within scope and across

scope concept. The object model only provides within scope extensions. The idea of

defining dimensions could be useful in defining software features and looking at the

problem of feature interactions. The specification of business operations - the

integration of each view’s invariants or rules-must include not only the specification of

the operations invariants but also the pre-conditions, post-conditions, premissions,

prohibition, and obligations for that operation.

192

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A. 13. Interview 13

SEMATECH

October, 1996

S. H. - SEMATECH

A. M. - IBM

M. K. - IBM

A. 13.1.1. Interview 13 Notes

WDB: Could you give me a quick overview of the structure of SEMATECH's CIM
Framework?

SH: The CIM Framework is based upon a partitioning of a MES (Manufacturing
Execution System) into seven functional groups or components. For each of
these groups, the CIM Framework specifies the group's purpose, the services
provided by the group, and the collaborations required to provide these services
be defining a set of external interfaces for each group. From a software
development perspective, the CIM Framework serves as a guideline for the
development of plug compatible applications. The approach taken with the
framework specification is to define an abstract model for semiconductor
manufacturing that consists of a set of generic abstractions, services, and
protocols representing the minimum required for supporting the development of
compatible plug compatible applications in a multi-supplier scenario. The
specification is not intended to define all of the applications that can or should
be supplied, nor is it intended to specify any specific physical realization of the
CIM Framework. SEMATECH believes that the CIM Framework can support
many diverse implementations, including centralized and distributed
architectures, using numerous system technologies. In a real CIM Framework
compliant implementation, applications developers can choose to implement and
specialize the framework’s abstract groups in any appropriate manner as long as
the specified external interfaces remain the same.

WDB: Now that the project is complete, what can you tell me about the ideas behind
the framework and how well they actually worked?

MK: In general, I would have to say that the project showed that the framework
specification can be implemented. However, we discovered a number of issues

193

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

with the framework that are causing us a lot of concern. First of all, you must
realize that we took only one off-the-shelf framework component and integrated
this component into a existing MES.

To get the new component to interoperate with the existing MES required us to
reorder the existing MES system's flow-of-control. Building a
wrapper/interface around the existing MES components was not sufficient. We
found that we had to rework an number o f the internals of the existing
components to support the required interfaces. When we started reworking the
existing components, we found that as we changed the internal structure of one
component we often introduced a new requirement on another or second
existing component—which required us to change that second component to meet
the new requirement—which cause a new requirement on other existing
components-etc. To simultaneously solve all of these problems, we had to use
a concurrent design approach where all of the component’s designs could be
determined at the same point in time.

AM: In reality we had two choices, 1) we could have either modified the new
component to match our old MES systems—which would not have given us any
new functionality, and 2) we could have modified the rest of the MES system to
fit our new component. We chose the second choice for the obvious reasons.

WDB: What if you wanted to add some functionality to a MES system that was not
CIM Framework compliant? You would run into the same set of problems
unless the extension was completely contained within one of the already defined
components.

AM: Yes, I think that you are correct. Any extension that crosses a component
boundary would require a new concurrent solution.

WDB: The CIM Framework represents one layer in the layered architecture. What
would happen if something in the layer below the CIM Framework, like a
machine in the fab, were to be completely redesigned?

AM: The internals of the components would have to be redesigned but the external
functionality would stay the same-meaning that the external interfaces would
also stay the same.

WDB: I think that would be true only if the new capabilities of the machine were
isolated within the functionality of the component's abstract description.
Looking at what happened between components within a single layer (the MES
layer described by the CIM Framework) when the new functionality extended
across the component boundary, I think that any functionality that extends
across layers of abstraction would result in the same set of problems. Let me

194

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

try to explain what I mean by asking, Does the functionality of a m a c h i n e in the
fab end up being represented in more than one C I M Framework component?

AM: Yes. All the time.

WDB: So viewed from the layer of abstraction below the CIM Framework looking up
at the CIM Framework layer, the abstract representation of a machine's
functionality in the CIM Framework is split across the CIM Framework’s
components—which are decomposed based upon a functional decomposition of
an MES system. Looking at the machine from the CIM Framework layer, the
functionality of the machine is split into multiple viewpoints each represented by
a functionality decomposed component. Which means that the machine's
functionality from the CIM Framework perspective must simultaneously meet
all of the requirements of the different viewpoints. If you extend the underlying
functionality of the machine and that functionality flows into more than one of
the CIM Frameworks viewpoints, then the functionality flows across
components boundaries in the CIM Framework.

AM: Yes, that would be true.

A. 13.2. Interview 13 Write-Up

To provide interoperability between components within a layer, components

must be built under the same solution approach—in addition to having syntactic and

semantic invariance. When extending the functionality of the layer, some extensions

will not be able to be implemented that are completely encapsulated with a single

component's boundary. In that case, reciprocal or transitive dependencies will be

created as other components within the layer are changed to provide meet the new

requirements—"how" you implement a component will, in part, determine "what"

functionality it requires from other components. Since the emergent properties of the

system result from the interrelationships between components, "how" you implement

the invariants of those relationships determines the emergent properties of the system.

195

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

